You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I train the movingmnist dataset with 80k epoches, but at last when I test the checkpoint which I save, I cannot get the perfect score.
I get the score as below:
FLAGS.DEFINE_string('train_data_paths', 'data/moving-mnist-example/moving-mnist-train.npz', 'train data paths.')
FLAGS.DEFINE_string('valid_data_paths', 'data/moving-mnist-example/moving-mnist-valid.npz', 'validation data paths.')
FLAGS.DEFINE_string('save_dir', 'checkpoints/_mnist_e3d_lstm', 'dir to store trained net.')
FLAGS.DEFINE_string('gen_frm_dir', 'results/_mnist_e3d_lstm', 'dir to store result.')
FLAGS.DEFINE_string('logdir', './Summary', 'dir to store summary.')
FLAGS.DEFINE_boolean('is_Training', True, 'training or testing')
FLAGS.DEFINE_string('dataset_name', 'mnist', 'The name of dataset.')
FLAGS.DEFINE_integer('input_length', 10, 'input length.')
FLAGS.DEFINE_integer('total_length', 20, 'total input and output length.')
FLAGS.DEFINE_integer('img_width', 64, 'input image width.')
FLAGS.DEFINE_integer('img_channel', 1, 'number of image channel.')
FLAGS.DEFINE_integer('patch_size', 4, 'patch size on one dimension.')
FLAGS.DEFINE_boolean('reverse_input', False,
'reverse the input/outputs during training.')
FLAGS.DEFINE_string('model_name', 'e3d_lstm', 'The name of the architecture.')
FLAGS.DEFINE_string('pretrained_model', '', '.ckpt file to initialize from.')
FLAGS.DEFINE_string('num_hidden', '64,64,64,64',
'COMMA separated number of units of e3d lstms.')
FLAGS.DEFINE_integer('filter_size', 5, 'filter of a e3d lstm layer.')
FLAGS.DEFINE_boolean('layer_norm', True, 'whether to apply tensor layer norm.')
FLAGS.DEFINE_boolean('scheduled_sampling', True, 'for scheduled sampling')
FLAGS.DEFINE_integer('sampling_stop_iter', 50000, 'for scheduled sampling.')
FLAGS.DEFINE_float('sampling_start_value', 1.0, 'for scheduled sampling.')
FLAGS.DEFINE_float('sampling_changing_rate', 0.00002, 'for scheduled sampling.')
FLAGS.DEFINE_float('lr', 0.001, 'learning rate.')
FLAGS.DEFINE_integer('batch_size', 4, 'batch size for training.')
FLAGS.DEFINE_integer('max_iterations', 80000, 'max num of steps.')
FLAGS.DEFINE_integer('display_interval', 1,
'number of iters showing training loss.')
FLAGS.DEFINE_integer('test_interval', 1000, 'number of iters for test.')
FLAGS.DEFINE_integer('snapshot_interval', 1000,
'number of iters saving models.')
FLAGS.DEFINE_integer('num_save_samples', 10, 'number of sequences to be saved.')
FLAGS.DEFINE_integer('n_gpu', 1,
'how many GPUs to distribute the training across.')
FLAGS.DEFINE_boolean('allow_gpu_growth', True, 'allow gpu growth')
I test your pretrain model, I got the same mse in your paper:
We noticed that there is a bug in the current code about "global_memory" in "rnn_cell.py" which may cause bad training results on both datasets. We are working on fixing this issue and refreshing our pre-trained models. I will temporally merge this issue to #1.
I train the movingmnist dataset with 80k epoches, but at last when I test the checkpoint which I save, I cannot get the perfect score.
I get the score as below:
I just set the params in the run.py as below:
I test your pretrain model, I got the same mse in your paper:
I show some tensorboard result in my training e3d_lstm process:
I get the lowest train_loss is 1970 when its step on 20.25k.
And I find that I cannot get the loss as your pretrain model (loss_train:1674.2725).
So can I ask what the params you set?
The text was updated successfully, but these errors were encountered: