-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtask_affinity_score.py
141 lines (122 loc) · 4.98 KB
/
task_affinity_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
This code calculates the affinity score between a denoising tasks.
## Note.
Since my affiliation is changed during the neurips review process of our paper, some parts of my code are lost.
Note that Note that implementation can be different from codes originally used in my original paper.
"""
import os
import argparse
import torch
torch.backends.cudnn.benchmark = True
from omegaconf import OmegaConf
from torchvision import transforms
from torchvision.datasets import ImageFolder
from tqdm import tqdm
import numpy as np
from models.create_model import create_model
from diffusion import create_diffusion
from util.data_util import center_crop_arr
from diffusers.models import AutoencoderKL
def calculate_task_afinity_score(
weight_folder, model_config, image_size, num_classes, num_images_for_gradient, data_path
):
assert torch.cuda.is_available(), "calculating TAS currently requires at least one GPU."
config = OmegaConf.load(model_config)
latent_size = image_size // 8
config.model.param["latent_size"] = latent_size
config.model.param["num_classes"] = num_classes
model = create_model(model_config=config.model)
model.to("cuda")
diffusion = create_diffusion(timestep_respacing="")
model.train()
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-ema").to("cuda")
scaling_factor = 0.18215
def create_dataset():
transform = transforms.Compose(
[
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, image_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
dataset = ImageFolder(data_path, transform=transform)
return dataset
dataset = create_dataset()
# shuffle dataset and select num_images_for_gradient
indices = torch.randperm(len(dataset))[:num_images_for_gradient]
batch_size = 100
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
sampler=torch.utils.data.SubsetRandomSampler(indices),
num_workers=2,
pin_memory=True,
)
def vae_encode(x):
with torch.no_grad():
# Map input images to latent space + normalize latents:
x = vae.encode(x).latent_dist.sample().mul_(scaling_factor)
return x
# list up all the weights
ckpt_path_list = os.listdir(weight_folder)
tas_all = []
for ckpt in ckpt_path_list:
ckpt_path = os.path.join(weight_folder, ckpt)
model.load_state_dict(torch.load(ckpt_path)["model"], strict=False)
gradient_list = []
for t in tqdm(range(diffusion.num_timesteps)):
for data in tqdm(dataloader):
x, y = data
y = y.cuda()
timestep = torch.zeros_like(y) + t
x = x.cuda()
latent = vae_encode(x)
model_kwargs = dict(y=y)
loss_dict = diffusion.training_losses(model, latent, timestep, model_kwargs)
loss_dict["loss"].mean().backward()
gradient_list.append(
torch.cat(
[
p.grad.clone().detach().cpu().view(-1)
for p in model.parameters()
if p.grad is not None
]
),
)
# zero model gradient
model.zero_grad()
tas = np.zeros((diffusion.num_timesteps, diffusion.num_timesteps))
# calculate cosine similarity between gradients
for i in range(diffusion.num_timesteps):
for j in range(diffusion.num_timesteps):
gradient_i = gradient_list[i]
gradient_j = gradient_list[j]
cosine_similarity = torch.nn.functional.cosine_similarity(
gradient_i.unsqueeze(0), gradient_j.unsqueeze(0)
)
tas[i, j] = cosine_similarity.item()
tas_all.append(tas)
np.save(f"tas_{ckpt}.npy", tas) # for saving
return tas_all
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Task Affinity Score")
parser.add_argument(
"--weight_folder",
type=str,
help="Folder containing the weights of the models through iterations",
)
parser.add_argument("--model_config", type=str, default="config/DiT-S.yaml")
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--data_path", type=str, default="/root/dataset/imagenet/train")
parser.add_argument("--num_images_for_gradient", type=int, default=1000)
args = parser.parse_args()
task_afinity_score = calculate_task_afinity_score(
args.weight_folder,
args.model_config,
args.image_size,
args.num_classes,
args.num_images_for_gradient,
args.data_path,
)