-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdemo_resize.py
39 lines (39 loc) · 1.08 KB
/
demo_resize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from curses import resize_term
import numpy as np
import pykitti
import matplotlib
matplotlib.use('agg')
from matplotlib import pyplot as plt
import cv2
basedir = 'data'
seq = '00'
resize_ratio = (0.6,0.45) # (H,W)
data = pykitti.odometry(basedir,seq)
calib = data.calib
extran = calib.T_cam0_velo # [4,4]
intran_ratio = np.diag([resize_ratio[1],resize_ratio[0],1])
intran = intran_ratio @ calib.P_rect_20
pcd = data.get_velo(0).T # (4,N)
img = np.asarray(data.get_cam2(0))
H,W = img.shape[:2]
RH,RW = round(H*resize_ratio[0]), round(W*resize_ratio[1])
img = cv2.resize(img,(RW,RH),interpolation=cv2.INTER_LINEAR)
print(extran.shape,intran.shape)
print(pcd.shape,img.shape)
pcd[-1,:] = 1.0
pcd = intran @ extran @ pcd
pcd = pcd[:3,:]
u,v,w = pcd[0,:], pcd[1,:], pcd[2,:]
u = u/w
v = v/w
u = u
v = v
rev = (0<=u)*(u<W)*(0<=v)*(v<H)*(w>0)
u = u[rev]
v = v[rev]
r = np.linalg.norm(pcd[:,rev],axis=0)
plt.figure(figsize=(12,5),dpi=100,tight_layout=True)
plt.axis([0,RW,RH,0])
plt.imshow(img)
plt.scatter([u],[v],c=[r],cmap='rainbow_r',alpha=0.5,s=2)
plt.savefig('demo_proj_resize.png',bbox_inches='tight')