-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdataset.py
242 lines (220 loc) · 10.3 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import json
import torch
from torch.utils.data.dataset import Dataset
from torchvision.transforms import transforms as Tf
import numpy as np
import pykitti
import open3d as o3d
from utils import transform, se3
from PIL import Image
def check_length(root:str,save_name='data_len.json'):
seq_dir = os.path.join(root,'sequences')
seq_list = os.listdir(seq_dir)
seq_list.sort()
dict_len = dict()
for seq in seq_list:
len_velo = len(os.listdir(os.path.join(seq_dir,seq,'velodyne')))
dict_len[seq]=len_velo
with open(os.path.join(root,save_name),'w')as f:
json.dump(dict_len,f)
class KITTIFilter:
def __init__(self,voxel_size=0.3,concat:str = 'none'):
"""KITTIFilter
Args:
voxel_size (float, optional): voxel size for downsampling. Defaults to 0.3.
concat (str, optional): concat operation for normal estimation, 'none','xyz' or 'zero-mean'. Defaults to 'none'.
"""
self.voxel_size = voxel_size
self.concat = concat
def __call__(self, x:np.ndarray):
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(x)
# _, ind = pcd.remove_radius_outlier(nb_points=self.n_neighbor, radius=self.voxel_size)
# pcd.select_by_index(ind)
pcd = pcd.voxel_down_sample(self.voxel_size)
pcd_xyz = np.array(pcd.points,dtype=np.float32)
if self.concat == 'none':
return pcd_xyz
else:
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=self.voxel_size*3, max_nn=30))
pcd.normalize_normals()
pcd_norm = np.array(pcd.normals,dtype=np.float32)
if self.concat == 'xyz':
return np.hstack([pcd_xyz,pcd_norm]) # (N,3), (N,3) -> (N,6)
elif self.concat == 'zero-mean': # 'zero-mean'
center = np.mean(pcd_xyz,axis=0,keepdims=True) # (3,)
pcd_zero = pcd_xyz - center
pcd_norm *= np.where(np.sum(pcd_zero*pcd_norm,axis=1,keepdims=True)<0,-1,1)
return np.hstack([pcd_zero,pcd_norm]) # (N,3),(N,3) -> (N,6)
else:
raise RuntimeError('Unknown concat mode: %s'%self.concat)
class Resampler:
""" [N, D] -> [M, D]\n
used for training
"""
def __init__(self, num):
self.num = num
def __call__(self, x: np.ndarray):
num_points = x.shape[0]
idx = np.random.permutation(num_points)
if self.num < 0:
return x[idx]
elif self.num <= num_points:
idx = idx[:self.num] # (self.num,dim)
return x[idx]
else:
idx = np.hstack([idx,np.random.choice(num_points,self.num-num_points,replace=True)]) # (self.num,dim)
return x[idx]
class MaxResampler:
""" [N, D] -> [M, D] (M<=max_num)\n
used for testing
"""
def __init__(self,num,seed=8080):
self.num = num
np.random.seed(seed) # fix randomly sampling in test pipline
def __call__(self, x:np.ndarray):
num_points = x.shape[0]
x_ = np.random.permutation(x)
if num_points <= self.num:
return x_ # permutation
else:
return x_[:self.num]
class ToTensor:
def __init__(self,type=torch.float):
self.tensor_type = type
def __call__(self, x: np.ndarray):
return torch.from_numpy(x).type(self.tensor_type)
class BaseKITTIDataset(Dataset):
def __init__(self,basedir:str,batch_size:int,seqs=['09','10'],cam_id:int=2,
meta_json='data_len.json',skip_frame=1,
voxel_size=0.3,pcd_sample_num=4096,resize_ratio=(0.5,0.5),extend_ratio=(2.5,2.5),
):
if not os.path.exists(os.path.join(basedir,meta_json)):
check_length(basedir,meta_json)
with open(os.path.join(basedir,meta_json),'r')as f:
dict_len = json.load(f)
frame_list = []
for seq in seqs:
frame = list(range(0,dict_len[seq],skip_frame))
cut_index = len(frame)%batch_size
if cut_index > 0:
frame = frame[:-cut_index]
frame_list.append(frame)
self.kitti_datalist = [pykitti.odometry(basedir,seq,frames=frame) for seq,frame in zip(seqs,frame_list)]
# concat images from different seq into one batch will cause error
self.cam_id = cam_id
self.resize_ratio = resize_ratio
for seq,obj in zip(seqs,self.kitti_datalist):
self.check(obj,cam_id,seq)
self.sep = [len(data) for data in self.kitti_datalist]
self.sumsep = np.cumsum(self.sep)
self.resample_tran = Resampler(pcd_sample_num)
self.tensor_tran = ToTensor()
self.img_tran = Tf.ToTensor()
self.pcd_tran = KITTIFilter(voxel_size,'none')
self.extend_ratio = extend_ratio
def __len__(self):
return self.sumsep[-1]
@staticmethod
def check(odom_obj:pykitti.odometry,cam_id:int,seq:str)->bool:
calib = odom_obj.calib
cam_files_length = len(getattr(odom_obj,'cam%d_files'%cam_id))
velo_files_lenght = len(odom_obj.velo_files)
head_msg = '[Seq %s]:'%seq
assert cam_files_length>0, head_msg+'None of camera %d files'%cam_id
assert cam_files_length==velo_files_lenght, head_msg+"number of cam %d (%d) and velo files (%d) doesn't equal!"%(cam_id,cam_files_length,velo_files_lenght)
assert hasattr(calib,'T_cam0_velo'), head_msg+"Crucial calib attribute 'T_cam0_velo' doesn't exist!"
def __getitem__(self, index):
group_id = np.digitize(index,self.sumsep,right=False)
data = self.kitti_datalist[group_id]
T_cam2velo = getattr(data.calib,'T_cam%d_velo'%self.cam_id)
K_cam = np.diag([self.resize_ratio[1],self.resize_ratio[0],1]) @ getattr(data.calib,'K_cam%d'%self.cam_id)
if group_id > 0:
sub_index = index - self.sumsep[group_id-1]
else:
sub_index = index
raw_img = getattr(data,'get_cam%d'%self.cam_id)(sub_index) # PIL Image
H,W = raw_img.height, raw_img.width
RH = round(H*self.resize_ratio[0])
RW = round(W*self.resize_ratio[1])
REVH,REVW = self.extend_ratio[0]*RH,self.extend_ratio[1]*RW
K_cam_extend = K_cam.copy()
K_cam_extend[0,-1] *= self.extend_ratio[0]
K_cam_extend[1,-1] *= self.extend_ratio[1]
raw_img = raw_img.resize([RW,RH],Image.BILINEAR)
_img = self.img_tran(raw_img) # raw img input (3,H,W)
pcd = data.get_velo(sub_index)
pcd[:,3] = 1.0 # (N,4)
calibed_pcd = T_cam2velo @ pcd.T # [4,4] @ [4,N] -> [4,N]
_calibed_pcd = self.pcd_tran(calibed_pcd[:3,:].T).T # raw pcd input (3,N)
*_,rev = transform.binary_projection((REVH,REVW),K_cam_extend,_calibed_pcd)
_calibed_pcd = _calibed_pcd[:,rev]
_calibed_pcd = self.resample_tran(_calibed_pcd.T).T # (3,n)
_pcd_range = np.linalg.norm(_calibed_pcd,axis=0) # (n,)
u,v,r,_ = transform.pcd_projection((RH,RW),K_cam,_calibed_pcd,_pcd_range)
_depth_img = torch.zeros(RH,RW,dtype=torch.float32)
_depth_img[v,u] = torch.from_numpy(r).type(torch.float32)
_calibed_pcd = self.tensor_tran(_calibed_pcd)
_pcd_range = self.tensor_tran(_pcd_range)
K_cam = self.tensor_tran(K_cam)
T_cam2velo = self.tensor_tran(T_cam2velo)
return dict(img=_img,pcd=_calibed_pcd,pcd_range=_pcd_range,depth_img=_depth_img,
InTran=K_cam,ExTran=T_cam2velo)
class KITTI_perturb(Dataset):
def __init__(self,dataset:BaseKITTIDataset,max_deg:float,max_tran:float,mag_randomly=True,pooling_size=5,file=None):
assert (pooling_size-1) % 2 == 0, 'pooling size must be odd to keep image size constant'
self.pooling = torch.nn.MaxPool2d(kernel_size=pooling_size,stride=1,padding=(pooling_size-1)//2)
self.dataset = dataset
self.file = file
if self.file is not None:
self.perturb = torch.from_numpy(np.loadtxt(self.file,dtype=np.float32,delimiter=','))[None,...] # (1,N,6)
else:
self.transform = transform.UniformTransformSE3(max_deg,max_tran,mag_randomly)
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
data = self.dataset[index]
H,W = data['img'].shape[-2:] # (RH,RW)
calibed_pcd = data['pcd'] # (3,N)
InTran = data['InTran'] # (3,3)
if self.file is None: # randomly generate igt
_uncalibed_pcd = self.transform(calibed_pcd[None,:,:]).squeeze(0) # (3,N)
igt = self.transform.igt.squeeze(0) # (4,4)
else:
igt = se3.exp(self.perturb[:,index,:]) # (1,6) -> (1,4,4)
_uncalibed_pcd = se3.transform(igt,calibed_pcd[None,...]).squeeze(0) # (3,N)
igt.squeeze_(0) # (4,4)
_uncalibed_depth_img = torch.zeros_like(data['depth_img'],dtype=torch.float32)
proj_pcd = InTran.matmul(_uncalibed_pcd) # (3,3)x(3,N) -> (3,N)
proj_x = (proj_pcd[0,:]/proj_pcd[2,:]).type(torch.long)
proj_y = (proj_pcd[1,:]/proj_pcd[2,:]).type(torch.long)
rev = (0<=proj_x)*(proj_x<W)*(0<=proj_y)*(proj_y<H)*(proj_pcd[2,:]>0)
proj_x = proj_x[rev]
proj_y = proj_y[rev]
_uncalibed_depth_img[proj_y,proj_x] = data['pcd_range'][rev] # H,W
# add new item
new_data = dict(uncalibed_pcd=_uncalibed_pcd,uncalibed_depth_img=_uncalibed_depth_img,igt=igt)
data.update(new_data)
data['depth_img'] = self.pooling(data['depth_img'][None,...])
data['uncalibed_depth_img'] = self.pooling(data['uncalibed_depth_img'][None,...])
return data
if __name__ == "__main__":
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
base_dataset = BaseKITTIDataset('data',1,seqs=['00','01'],skip_frame=3)
dataset = KITTI_perturb(base_dataset,30,3)
data = dataset[2]
for key,value in data.items():
if isinstance(value,torch.Tensor):
shape = value.size()
else:
shape = value
print('{key}: {shape}'.format(key=key,shape=shape))
plt.figure()
plt.subplot(1,2,1)
plt.imshow(data['depth_img'].squeeze(0).numpy())
plt.subplot(1,2,2)
plt.imshow(data['uncalibed_depth_img'].squeeze(0).numpy())
plt.savefig('dataset_demo.png')