-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathModules.py
191 lines (174 loc) · 7.92 KB
/
Modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 29 23:39:37 2021
@author: 17478
"""
import torch.nn as nn
from torch.nn import functional as F
import torch
def conv3x3(in_planes, out_planes, stride=1, padding=1, dilation=1):
"""
3x3 convolution with padding
"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=padding, dilation=dilation, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1,
dilation=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, 3, stride=stride,
padding=dilation, dilation=dilation,bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ConvModule(nn.Module):
def __init__(self,inplanes, planes, **kwargs):
super(ConvModule,self).__init__()
self.conv = nn.Conv2d(inplanes, planes, **kwargs)
self.bn = nn.BatchNorm2d(planes)
self.activate = nn.ReLU(inplace=True)
def forward(self,x):
x = self.conv(x)
x = self.bn(x)
out = self.activate(x)
return out
class ASPPHead(nn.Module):
def __init__(self,num_classes):
super(ASPPHead,self).__init__()
self.dropout = nn.Dropout2d(p=0.1)
self.conv_seg = nn.Conv2d(128,num_classes,kernel_size=1,stride=1)
self.image_pool = nn.Sequential(
nn.AdaptiveAvgPool2d(output_size=1),
ConvModule(512,128,kernel_size=1,stride=1,bias=False),
)
self.aspp_modules = nn.ModuleList([
ConvModule(512, 128, kernel_size=1,stride=1,bias=False),
ConvModule(512, 128, kernel_size=3,stride=1,padding=12,dilation=12,bias=False),
ConvModule(512, 128, kernel_size=3,stride=1,padding=24,dilation=24,bias=False),
ConvModule(512, 128, kernel_size=3,stride=1,padding=36,dilation=36,bias=False),
])
self.bottleneck = ConvModule(640, 128, kernel_size=3,stride=1,padding=1,bias=False)
def forward(self,feature_map):
feature_map_h = feature_map.size()[2] # (== h/16)
feature_map_w = feature_map.size()[3] # (== w/16)
out_1x1 = self.aspp_modules[0](feature_map) # (shape: (batch_size, 128, h/16, w/16))
out_3x3_1 = self.aspp_modules[1](feature_map) # (shape: (batch_size, 128, h/16, w/16))
out_3x3_2 = self.aspp_modules[2](feature_map) # (shape: (batch_size, 128, h/16, w/16))
out_3x3_3 = self.aspp_modules[3](feature_map) # (shape: (batch_size, 128, h/16, w/16))
out_img = self.image_pool(feature_map) # (shape: (batch_size, 128, h/16, w/16))
out_img = F.interpolate(out_img, size=(feature_map_h, feature_map_w), mode="bilinear") # (shape: (batch_size, 128, h/16, w/16))
out = torch.cat([out_1x1, out_3x3_1, out_3x3_2, out_3x3_3, out_img], 1) # (shape: (batch_size, 640, h/16, w/16))
out = self.bottleneck(out) # (shape: (batch_size, 128, h/16, w/16))
out = self.dropout(out) # (shape: (batch_size, 128, h/16, w/16))
out = self.conv_seg(out) # (shape: (batch_size, num_classes, h/16, w/16))
return out
class FCNHead(nn.Module):
def __init__(self,num_classes=2,inplanes=256):
super(FCNHead,self).__init__()
planes = inplanes // 4
self.conv_seg = nn.Conv2d(planes,num_classes,kernel_size=1,stride=1)
self.dropout = nn.Dropout2d(p=0.1)
self.convs = nn.Sequential(
ConvModule(inplanes, planes, kernel_size=3,stride=1,padding=1,bias=False)
)
def forward(self,x):
x = self.convs(x)
x = self.dropout(x)
x = self.conv_seg(x)
return x
class resnet18(nn.Module):
def __init__(self, inplanes=3, planes=64):
super(resnet18,self).__init__()
self.stem = nn.Sequential(
nn.Conv2d(inplanes, 32, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 32, 3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, planes, 3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(planes),
nn.ReLU(inplace=True),
)
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
self.layer1 = nn.Sequential(
BasicBlock(planes, planes, stride=1, dilation=1),
BasicBlock(planes, planes, stride=1),
)
self.layer2 = nn.Sequential(
BasicBlock(planes, planes*2, stride=2, dilation=1, downsample=nn.Sequential(
nn.Conv2d(planes, planes*2, 1, stride=2, bias=False),
nn.BatchNorm2d(planes*2),
)),
BasicBlock(planes*2, planes*2, stride=1),
)
self.layer3 = nn.Sequential(
BasicBlock(planes*2, planes*4, stride=1,downsample=nn.Sequential(
nn.Conv2d(planes*2, planes*4, 1, stride=1, bias=False),
nn.BatchNorm2d(planes*4),
)),
BasicBlock(planes*4, planes*4, stride=1, dilation=2),
)
self.layer4 = nn.Sequential(
BasicBlock(planes*4, planes*8, stride=1,dilation=2,downsample=nn.Sequential(
nn.Conv2d(planes*4, planes*8, 1, stride=1, bias=False),
nn.BatchNorm2d(planes*8),
)),
BasicBlock(planes*8, planes*8, stride=1,dilation=4),
)
def forward(self,x):
out = self.stem(x)
out = self.maxpool(out)
out1 = self.layer1(out)
out2 = self.layer2(out1)
out3 = self.layer3(out2)
out4 = self.layer4(out3)
return out1, out2, out3, out4
class EncoderDecoder(nn.Module):
def __init__(self,num_classes=2,auxiliary_loss=True, backbone_pretrained=True):
super(EncoderDecoder,self).__init__()
self.backbone = resnet18()
self.decode_head = ASPPHead(num_classes=num_classes)
self.auxiliary_loss = auxiliary_loss
if auxiliary_loss:
self.auxiliary_head = FCNHead(num_classes=num_classes,inplanes=256)
else:
self.auxiliary_head = None
if backbone_pretrained:
backbone_state = torch.load("resnetV1C.pth")['state_dict']
for key in self.backbone.state_dict().keys():
assert key in backbone_state.keys(), "backbone state-dict mismatch"
self.backbone.load_state_dict(backbone_state,strict=False)
print("pretrained model loaded!")
def forward(self,x):
input_shape = x.shape[-2:]
feat = self.backbone(x)
decode_seg = self.decode_head(feat[-1])
decode_seg = F.interpolate(decode_seg, size=input_shape, mode='bilinear', align_corners=False)
if (not self.auxiliary_loss) or (not self.training):
return decode_seg
else:
aux_seg = self.auxiliary_head(feat[-2])
aux_seg = F.interpolate(aux_seg, size=input_shape, mode='bilinear', align_corners=False)
return decode_seg, aux_seg
if __name__ == "__main__":
model = resnet18()
x = torch.rand(1,3,32,32)
outs = model(x)
print(outs[0].size(),outs[1].size(),outs[2].size(),outs[3].size())