From 3c6b2c24f80728fc8728bced32cec3c98f27592c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Thomas=20G=C3=BCnther?= Date: Tue, 19 Mar 2024 09:10:59 +0100 Subject: [PATCH] update README.md --- README.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index 7d6b67a..bc08c91 100644 --- a/README.md +++ b/README.md @@ -36,7 +36,7 @@ We recommend installing a Python distribution like [miniforge][miniforge] or [An - open a terminal (on Windows Powershell prompt) ``` -conda create -n pg -c gimli -c conda-forge pygimli=1.4.6 jupyter +conda create -n pg -c gimli -c conda-forge pygimli=1.5 jupyter ``` or download the file https://github.com/gimli-org/SEGwebinar/environment.yml @@ -57,11 +57,8 @@ jupyter notebook 1. Login to [colab][colab] using your Google account. 2. Open new Notebook and choose the GitHub option 3. Paste the [webinar] URL https://github.com/gimli-org/SEGwebinar -4. Select the template notebook or any ready one - -## Acknowledgement - -The used data have been measured by xxx. +4. Select the template or full notebook +5. Create your own notebook, starting with `!pip install pygimli` ## License @@ -72,17 +69,19 @@ This work is licensed under the [Apache 2.0 License](https://www.apache.org/lice * [pyGIMLi tutorial][transform2021] given on Transform 2021 (with 2h Youtube tutorial) * [pyGIMLi tutorial][transform2022] given on Transform 2022 (with 2h Youtube tutorial) * Jupyter [Notebook collection][notebooks] using pyGIMLi +* Collection of [Example data][exampledata] used here and on [website][pygimli] ## References * Rücker, C., Günther, T., Wagner, F.M. (2017): pyGIMLi: An open-source library for modelling and inversion in geophysics, Computers & Geosciences 109, 106-123, [doi:10.1016/j.cageo.2017.07.011](https://doi.org/10.1016/j.cageo.2017.07.011). -* Wunderlich, T., Fischer, P., Wilken, D., Hadler, H., Erkul, E., Mecking, R., Günther, T., Heinzelmann, M., Vött, A. & Rabbel, W. (2018): Constraining Electric Resistivity Tomography by Direct Push Electric Conductivity logs and vibracores: An exemplary study of the Fiume Morto silted riverbed (Ostia Antica, Western Italy). Geophysics 83(3), B87-B103, [doi:10.1190/geo2016-0660.1](https://doi.org/10.1190/geo2016-0660.1). +* Hübner, R., Heller, K., Günther, T. & Kleber, A. (2015): Monitoring hillslope moisture dynamics with sur- face ERT for enhancing spatial significance of hydrometric point measurements. Hydrology and Earth System Sciences 19(1), 225-240, [doi:10.5194/hess-19-225-2015](https://doi.org/10.5194/hess-19-225-2015). * Jordi, C., Doetsch, J., Günther, T., Schmelzbach, C. & Robertsson, J.O.A. (2018): Geostatistical regularisation operators for geophysical inverse problems on irregular meshes. Geophysical Journal International 213, 1374-1386, [doi:10.1093/gji/ggy055](https://doi.org/10.1093/gji/ggy055). +* Grünenbaum, N., Günther, T., Greskowiak, J., Vienken, T., Müller-Petke, M. & Massmann, G. (2023): Salinity distribution in the subterranean estuary of a meso-tidal high-energy beach characterized by Electrical Resistivity Tomography and Direct Push technology. J. of Hydrol. 617, 129074, [doi:10.1016/j.jhydrol.2023.129074](https://doi.org/10.1016/j.jhydrol.2023.129074). +* Wunderlich, T., Fischer, P., Wilken, D., Hadler, H., Erkul, E., Mecking, R., Günther, T., Heinzelmann, M., Vött, A. & Rabbel, W. (2018): Constraining Electric Resistivity Tomography by Direct Push Electric Conductivity logs and vibracores: An exemplary study of the Fiume Morto silted riverbed (Ostia Antica, Western Italy). Geophysics 83(3), B87-B103, [doi:10.1190/geo2016-0660.1](https://doi.org/10.1190/geo2016-0660.1). * Wagner, F.M., Mollaret, C., Günther, T., Kemna, A., Hauck, A. (2019): Quantitative imaging of water, ice, and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data. Geophys. J. Int. 219, 1866-1875. [doi:10.1093/gji/ggz402](https://doi.org/10.1093/gji/ggz402). * Ronczka, M., Günther, T., Grinat, M. & Wiederhold, H. (2020): Monitoring freshwater-saltwater interfaces with SAMOS - installation effects on data and inversion. Near Surf. Geophys. 18(4), 369-383, [doi:10.1002/nsg.12115](https://doi.org/10.1002/nsg.12115). * Jiang, C., Igel, J., Dlugosch, R., Müller-Petke, M., Günther, T., Helms, J., Lang, J. & Winsemann (2020): Magnetic resonance tomography constrained by ground-penetrating radar for improved hydrogeophysical characterisation, Geophysics 85(6), JM13-JM26, [doi:10.1190/geo2020-0052.1](https://doi.org/10.1190/geo2020-0052.1). * Skibbe, N., Günther, T. & Müller-Petke, M. (2021): Improved hydrogeophysical imaging by structural coupling of two-dimensional magnetic resonance and electrical resistivity tomography. Geophysics 86 (5), WB135-WB146, [doi:10.1190/geo2020-0593.1](https://doi.org/10.1190/geo2020-0593.1). * Rochlitz, R., Becken, M. & Günther, T. (2023): Three-dimensional inversion of semi-airborne electromagnetic data with a second-order finite-element forward solver. Geophys. J. Int. 234(1), 528-545, [doi:10.1093/gji/ggad056](https://doi.org/10.1093/gji/ggad056). -* Grünenbaum, N., Günther, T., Greskowiak, J., Vienken, T., Müller-Petke, M. & Massmann, G. (2023): Salinity distribution in the subterranean estuary of a meso-tidal high-energy beach characterized by Electrical Resistivity Tomography and Direct Push technology. J. of Hydrol. 617, 129074, [doi:10.1016/j.jhydrol.2023.129074](https://doi.org/10.1016/j.jhydrol.2023.129074). [florian]: https://www.gim.rwth-aachen.de/ [halbmy]: https://www.liag-hannover.de/ @@ -91,6 +90,7 @@ This work is licensed under the [Apache 2.0 License](https://www.apache.org/lice [gimli]: https://github.com/gimli-org/gimli [webinar]: https://github.com/gimli-org/SEGwebinar [notebooks]: https://github.com/gimli-org/notebooks +[exampledata]: https://github.com/gimli-org/example-data [transform2021]: https://github.com/gimli-org/transform2021 [transform2022]: https://github.com/gimli-org/transform2022 [jupyter]: https://jupyter.org/