-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
112 lines (98 loc) · 3.28 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
Train a diffusion model on images.
"""
import argparse
from dataset import create_loader
from model import select_model
from model.set_diffusion import logger
from model.set_diffusion.resample import create_named_schedule_sampler
from model.set_diffusion.script_util import (add_dict_to_argparser,
args_to_dict,
create_model_and_diffusion,
model_and_diffusion_defaults)
from model.set_diffusion.train_util import TrainLoop
from utils.util import count_params, set_seed
from utils.path import set_folder
DIR=set_folder()
def main():
args = create_argparser().parse_args()
print()
dct = vars(args)
for k in sorted(dct):
print(k, dct[k])
print()
# dist_util.setup_dist()
logger.configure(dir=DIR, mode="training", args=args, tag='')
logger.log("creating model and diffusion...")
model = select_model(args)(args)
print(count_params(model))
model.to(args.device)
# model.to(dist_util.dev())
schedule_sampler = create_named_schedule_sampler(
args.schedule_sampler, model.diffusion
)
logger.log("creating data loader...")
train_loader = create_loader(args, split="train", shuffle=True)
# evaluation is expensive...perform it only when saving models
val_loader = create_loader(args, split="val", shuffle=False)
logger.log("training...")
TrainLoop(
model=model,
data=train_loader,
batch_size=args.batch_size,
microbatch=args.microbatch,
lr=args.lr,
ema_rate=args.ema_rate,
log_interval=args.log_interval,
save_interval=args.save_interval,
resume_checkpoint=args.resume_checkpoint,
use_fp16=args.use_fp16,
fp16_scale_growth=args.fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=args.weight_decay,
lr_anneal_steps=args.lr_anneal_steps,
val_loader=val_loader,
args=args
).run_loop()
def create_argparser():
defaults = dict(
model='vfsddpm',
dataset='cifar100',
image_size=32,
sample_size=5,
patch_size=8,
hdim=256,
in_channels=3,
encoder_mode='vit',
pool='mean', # mean, mean_patch
context_channels=256,
mode_context="deterministic",
mode_conditioning='film', # conditions using film, lag conditions using attention, None standard DDPM, film+lag
augment=False,
device="cuda",
data_dir="/home/gigi/ns_data",
schedule_sampler="uniform",
num_classes=1,
lr=1e-4,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=16,
batch_size_eval=32,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=1000,
save_interval=10000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
clip_denoised=True,
use_ddim=False,
tag=None,
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
s = set_seed(0)
main()