-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_words.py
287 lines (204 loc) · 8.99 KB
/
train_words.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import argparse
import logging
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.autograd import Variable
from models import CNN
from utils.iam_dataset import IAMDataset
from utils.auxilary_functions import affine_transformation
from evaluation_functions import seg_free_eval
from dataclasses import dataclass
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.basicConfig(format='[%(asctime)s, %(levelname)s, %(name)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger('HTR-Experiment::train')
logger.info('--- Running HTR Training ---')
# argument parsing
parser = argparse.ArgumentParser()
# - train arguments
parser.add_argument('--learning_rate', '-lr', type=float, default=1e-4,
help='lr')
parser.add_argument('--gpu_id', '-gpu', action='store', type=int, default='0',
help='The ID of the GPU to use. If not specified, training is run in CPU mode.')
parser.add_argument('--dataset_path', action='store', type=str, default='../../datasets/')
parser.add_argument('--model_load_path', action='store', type=str, default=None)
parser.add_argument('--model_save_path', action='store', type=str, default='./saved_models/temp.pt')
parser.add_argument('--dataset', action='store', type=str, default='iam')
parser.add_argument('--max_epochs', action='store', type=int, default=80)
parser.add_argument('--batch_size', action='store', type=int, default=64)
args = parser.parse_args()
gpu_id = args.gpu_id
logger.info('Loading dataset.')
max_epochs = args.max_epochs
batch_size = args.batch_size
# dataset loaders for training and testing
dataset = args.dataset
dataset_folder = args.dataset_path
if dataset != 'iam':
raise NotImplementedError
aug_transforms =[lambda x: affine_transformation(x, s=.2)]
train_set = IAMDataset(dataset_folder, subset='train', segmentation_level='fword', fixed_size=(64 + 1 * 32, 256 + 0 * 128), transforms=aug_transforms) # (128, 1024))
test_set = IAMDataset(dataset_folder, subset='test', segmentation_level='fword', fixed_size=(64 + 1 * 32, 256 + 0 * 128))
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#form_val_set = IAMDataset(dataset_folder, subset='val', segmentation_level='form', fixed_size=None)
form_val_set = IAMDataset(dataset_folder, subset='test', segmentation_level='form', fixed_size=None)
ndisplay = 50
# use only Ns forms for validation - just to see if the process is going in the right direction
Ns = 10 # iam seg-free #docs eval
# augmentation using data sampler
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=8, drop_last=True)
test_loader = DataLoader(test_set, batch_size=64, shuffle=False, num_workers=8)
# hardcoded classes definition for English alphabet + numbers + punctuation
classes = '_!"#&\'()*+,-./0123456789:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz '
# use reduced character set to be in line with KWS methods
reduced_charset = True
def reduced(istr):
return ''.join([c if (c.isalnum() or c=='_' or c==' ') else '*' for c in istr.lower()])
if reduced_charset:
classes = reduced(classes)
nclasses = ''
for c in classes:
if c in nclasses:
continue
else:
nclasses += c
classes = nclasses
cdict = {c:i for i,c in enumerate(classes)}
icdict = {i:c for i,c in enumerate(classes)}
# CNN configuration
logger.info('Preparing Net...')
cnn_cfg = [(2, 64), 'M', (4, 128), 'M', (4, 256)]
cnn_top = 128
cnn = CNN(cnn_cfg, cnn_top, len(classes))
if args.model_load_path is not None:
cnn.load_state_dict(torch.load(args.model_load_path).state_dict())
cnn.cuda(args.gpu_id)
# define optimizer & scheduler
nlr = args.learning_rate
#restart_epochs = max_epochs #// 2
optimizer = torch.optim.AdamW(cnn.parameters(), nlr, weight_decay=0.00005)
#scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, restart_epochs)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [int(.5 * max_epochs), int(.75 * max_epochs)], gamma=.1)
def train(epoch):
cnn.train()
optimizer.zero_grad()
closs = []
for iter_idx, (img, transcr, bbox) in enumerate(train_loader):
if reduced_charset:
transcr = [reduced(tt) for tt in transcr]
img = Variable(img.cuda(gpu_id))
ycnt, len_in, yctc = cnn(img, bbox)
act_lens = torch.IntTensor(len_in) # .to(img.device)
labels = torch.IntTensor([cdict[c] for c in ''.join(transcr)]) #.to(img.device)
label_lens = torch.IntTensor([len(t) for t in transcr]) #.to(img.device)
loss1 = F.ctc_loss(F.log_softmax(yctc.cpu(), dim=2), labels, act_lens, label_lens,
zero_infinity=True, reduction='sum') / img.size(0)
cnt_target = torch.zeros((ycnt.size(0), len(classes) - 1))
for ii, tt in enumerate(transcr):
for c in tt:
if c in classes[1:-1]:
cnt_target[ii, cdict[c]-1] += 1.0
# space indicator!
cnt_target[:, -1] = 0.0
cnt_target = cnt_target.float()
mask = (cnt_target > 0).float()
ycnt = ycnt.cpu()
p = .5
loss2 = p * (mask * (ycnt - cnt_target)**2).sum()/mask.sum() + (1-p) * ((1 - mask) * (ycnt - cnt_target)**2).sum()/(1-mask).sum()
loss2 = loss2 + 10. * torch.mean((ycnt.mean(-1) - cnt_target.mean(-1))**2)
# help convergence by training htr only in the start
if epoch < 2:
loss_val = loss1
else:
loss_val = 1.0 * loss1 + 2 * loss2
closs += [loss_val.data]
loss_val.backward()
# magnitude clipping
torch.nn.utils.clip_grad_norm_(cnn.parameters(), .1)
optimizer.step()
optimizer.zero_grad()
# mean runing errors??
if iter_idx % ndisplay == (ndisplay-1):
logger.info('Epoch %d, Iteration %d: %f', epoch, iter_idx+1, sum(closs)/len(closs))
logger.info('%f %f %f', loss1.item(), loss2.item(), eloss.item())
#logger.info('lr: %f', optimizer.get_lr()[0])
closs = []
tst_img, tst_transcr, bbox = test_set.__getitem__(np.random.randint(test_set.__len__()))
if reduced_charset:
tst_transcr = reduced(tst_transcr)
with torch.no_grad():
ycnt, _, yctc, _ = cnn(Variable(tst_img.cuda(gpu_id)).unsqueeze(0), bbox.cuda(gpu_id).unsqueeze(0))
print('orig:: ' + tst_transcr)
tst_o = yctc
tdec = tst_o.argmax(2).permute(1, 0).cpu().numpy().squeeze()
tt = [v for j, v in enumerate(tdec) if j == 0 or v != tdec[j - 1]]
print('gdec:: ' + ''.join([icdict[t] for t in tt]).replace('_', ''))
cnt_str = []
for c in tst_transcr:
if c in classes[1:-1]:
ccnt = ycnt[0, cdict[c]-1]
cnt_str += ['/' + c + ' : ' + str(round(ccnt.item(), 3))]
print(''.join(cnt_str))
import editdistance
# slow implementation
def test(epoch):
cnn.eval()
logger.info('Testing at epoch %d', epoch)
tdecs = []
transcrs = []
for (img, transcr, bbox) in test_loader:
img = Variable(img.cuda(gpu_id))
ycnt, yctc = cnn(img, bbox)
tdec = yctc.argmax(2).permute(1, 0).cpu().numpy().squeeze()
tdecs += [tdec]
transcrs += list(transcr)
tdecs = np.concatenate(tdecs)
cer, wer = [], []
for tdec, transcr in zip(tdecs, transcrs):
transcr = transcr.strip()
if reduced_charset:
transcr = reduced(transcr)
tt = [v for j, v in enumerate(tdec) if j == 0 or v != tdec[j - 1]]
dec_transcr = ''.join([icdict[t] for t in tt]).replace('_', '')
dec_transcr = dec_transcr.strip()
cer += [float(editdistance.eval(dec_transcr, transcr))/ len(transcr)]
wer += [1 - float(transcr == dec_transcr)]
logger.info('CER at epoch %d: %f', epoch, sum(cer) / len(cer))
logger.info('WER at epoch %d: %f', epoch, sum(wer) / len(wer))
cnn.train()
cnt = 0
logger.info('Training:')
@dataclass
class EvalArgs:
clevels: int = 1
cos_thres: float = 0.5
ctc_thres: float = 3.5
K: int = 50
prob_thres: float = 0.05
carea_ratio: float = 0.5
ctc_mode: int = 2
iou_mode: int = 2
doc_scale: float = 1.0
masked_form: bool = (dataset == 'iam')
reduced_charset: bool = reduced_charset
eval_args = EvalArgs() #3.5)
best_map = 0
for epoch in range(1, max_epochs + 1):
train(epoch)
scheduler.step()
if epoch % 2 == 0:
test(epoch)
tmp_map = seg_free_eval(form_val_set, cnn, classes, eval_args, Ns=Ns)
if tmp_map > best_map:
print('Saving net !!')
torch.save(cnn.cpu(), args.model_save_path.replace('.pt', '_best.pt'))
cnn.cuda(gpu_id)
best_map = tmp_map
if epoch % 5 == 0:
torch.save(cnn.cpu(), args.model_save_path)
cnn.cuda(gpu_id)
torch.save(cnn.cpu(), args.model_save_path)