-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
121 lines (96 loc) · 4.27 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class CNN(nn.Module):
def __init__(self, cnn_cfg, cnn_top, nclasses):
super(CNN, self).__init__()
in_channels = 8
self.features = nn.ModuleList([nn.Conv2d(1, in_channels, 7, 2, 3), nn.ReLU()])
cntm = 0
cnt = 1
for m in cnn_cfg:
if m == 'M':
self.features.add_module('mxp' + str(cntm), nn.MaxPool2d(kernel_size=2, stride=2))
cntm += 1
else:
for i in range(m[0]):
x = m[1]
self.features.add_module('cnv' + str(cnt), BasicBlock(in_channels, x))
in_channels = x
cnt += 1
input_size = in_channels
hidden_size = cnn_top
self.temporal = nn.Sequential(
nn.Conv2d(input_size, hidden_size, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(hidden_size), nn.ReLU(), nn.Dropout(.1),
nn.Conv2d(hidden_size, nclasses, kernel_size=(1, 5), stride=1, padding=(0, 2)),
)
self.scale = nn.Sequential(
nn.Conv2d(input_size, hidden_size, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(hidden_size), nn.ReLU(), nn.Dropout(.1),
nn.Conv2d(hidden_size, 1, kernel_size=3, stride=1, padding=1),
)
def forward(self, x, bbox=None, reduce=True, scale=True):
y = x
if bbox is not None:
bbox = bbox.to(x.device)
#'''
if np.random.uniform() < .5:
kr = np.random.randint(0, 5)
y = y * (-F.max_pool2d(-bbox, 2 * kr + 1, 1, kr))
#y = y * bbox
#'''
for nn_module in self.features:
y = nn_module(y)
s = 1
if scale:
#s = F.sigmoid(self.scale(y.detach()))
s = F.sigmoid(self.scale(y))
s = F.avg_pool2d(s, 3, 1, 1)
if reduce:
yc = self.temporal(y)
#yc = self.temporal(y.detach())
if bbox is not None:
bbox_mask = (F.interpolate(bbox, size=[y.size(2), y.size(3)]) > .1).float()
bbox_mask_aux = bbox_mask
if self.training:
kr = np.random.randint(0, 4)
bbox_mask_aux = bbox_mask * (-F.max_pool2d(-bbox_mask, (2 * kr + 1, 1), (1, 1), (kr, 0)))
bbox_mask_aux *= torch.bernoulli(.75 * torch.ones_like(bbox_mask_aux))
bbox_mask_aux = bbox_mask_aux.repeat(1, yc.size(1), 1, 1)
bbox_mask_max = -100. * yc.abs().mean() * (1 - bbox_mask_aux).detach()
yctc = F.max_pool2d(yc + bbox_mask_max.detach(), [y.size(2), 1], stride=[y.size(2), 1], padding=[0, 0])
bbox_mask_cnt = bbox_mask
ycnt = (F.softmax(yc, 1) * s * bbox_mask_cnt.detach())[:, 1:].sum(2).sum(2)
else:
yctc = F.max_pool2d(yc, [y.size(2), 1], stride=[y.size(2), 1], padding=[0, 0])
ycnt = (F.softmax(yc, 1) * s)[:, 1:].sum(2).sum(2)
if self.training:
len_in = y.size(0) * [y.size(3)]
return ycnt, len_in, yctc.permute(2, 3, 0, 1)[0]
else:
return ycnt, yctc.permute(2, 3, 0, 1)[0]
else:
yc = self.temporal(y)
return yc, s