-
Notifications
You must be signed in to change notification settings - Fork 25
/
ora.Rmd
executable file
·254 lines (193 loc) · 9.03 KB
/
ora.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
---
title: "Over-Representation Analysis with ClusterProfiler"
author: "Mohammed Khalfan"
date: "5/15/2019"
output:
html_document:
df_print: paged
df_print: paged
---
This R Notebook describes the implementation of over-representation analysis using the clusterProfiler package. For more information please see the full documentation here: https://bioconductor.org/packages/release/bioc/vignettes/clusterProfiler/inst/doc/clusterProfiler.html
# Install and load packages
```{r, message=F, warning=F}
#BiocManager::install("clusterProfiler", version = "3.8")
#BiocManager::install("pathview")
#install.packages("wordcloud")
library(clusterProfiler)
library(wordcloud)
```
# Annotations
I'm using *D melanogaster* data, so I install and load the annotation "org.Dm.eg.db" below. See all annotations available here: http://bioconductor.org/packages/release/BiocViews.html#___OrgDb (there are 19 presently available).
```{r, message=F, warning=F}
organism = "org.Dm.eg.db"
#BiocManager::install(organism, character.only = TRUE)
library(organism, character.only = TRUE)
```
#Prepare Input
```{r}
# reading in input from deseq2
df = read.csv("drosphila_example_de.csv", header=TRUE)
# we want the log2 fold change
original_gene_list <- df$log2FoldChange
# name the vector
names(original_gene_list) <- df$X
# omit any NA values
gene_list<-na.omit(original_gene_list)
# sort the list in decreasing order (required for clusterProfiler)
gene_list = sort(gene_list, decreasing = TRUE)
# Exctract significant results (padj < 0.05)
sig_genes_df = subset(df, padj < 0.05)
# From significant results, we want to filter on log2fold change
genes <- sig_genes_df$log2FoldChange
# Name the vector
names(genes) <- sig_genes_df$X
# omit NA values
genes <- na.omit(genes)
# filter on min log2fold change (log2FoldChange > 2)
genes <- names(genes)[abs(genes) > 2]
```
#Create enrichGO object
Params:
**Ontology** Options: ["BP", "MF", "CC"]
**keyType** This is the source of the annotation (gene ids). The options vary for each annotation. In the example of *org.Dm.eg.db*, the options are:
"ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "ENTREZID"
"ENZYME" "EVIDENCE" "EVIDENCEALL" "FLYBASE" "FLYBASECG" "FLYBASEPROT"
"GENENAME" "GO" "GOALL" "MAP" "ONTOLOGY" "ONTOLOGYALL"
"PATH" "PMID" "REFSEQ" "SYMBOL" "UNIGENE" "UNIPROT"
Check which options are available with the `keytypes` command, for example `keytypes(org.Dm.eg.db)`.
## Create the object
```{r}
go_enrich <- enrichGO(gene = genes,
universe = names(gene_list),
OrgDb = organism,
keyType = 'ENSEMBL',
readable = T,
ont = "BP",
pvalueCutoff = 0.05,
qvalueCutoff = 0.10)
```
#Output
##Table of results
```{r}
head(go_enrich)
```
## Upset Plot
Emphasizes the genes overlapping among different gene sets.
```{r fig.width=18, fig.height=12}
#BiocManager::install("enrichplot")
library(enrichplot)
upsetplot(go_enrich)
```
##Wordcloud
```{r fig.width=28, fig.height=26}
wcdf<-read.table(text=go_enrich$GeneRatio, sep = "/")[1]
wcdf$term<-go_enrich[,2]
wordcloud(words = wcdf$term, freq = wcdf$V1, scale=(c(4, .1)), colors=brewer.pal(8, "Dark2"), max.words = 25)
```
##Barplot
```{r echo=TRUE}
barplot(go_enrich,
drop = TRUE,
showCategory = 10,
title = "GO Biological Pathways",
font.size = 8)
```
##Dotplot
```{r echo=TRUE}
dotplot(go_enrich)
```
##Encrichment plot map:
Enrichment map organizes enriched terms into a network with edges connecting overlapping gene sets. In this way, mutually overlapping gene sets are tend to cluster together, making it easy to identify functional modules.
```{r echo=TRUE}
emapplot(go_enrich)
```
##Enriched GO induced graph:
```{r fig.width=12}
goplot(go_enrich, showCategory = 10)
```
##Category Netplot
The cnetplot depicts the linkages of genes and biological concepts (e.g. GO terms or KEGG pathways) as a network (helpful to see which genes are involved in enriched pathways and genes that may belong to multiple annotation categories).
```{r fig.width=12}
# categorySize can be either 'pvalue' or 'geneNum'
cnetplot(go_enrich, categorySize="pvalue", foldChange=gene_list)
```
##KEGG Pathway Enrichment
For KEGG pathway enrichment using the `gseKEGG()` function, we need to convert id types. We can use the `bitr` function for this (included in clusterProfiler). It is normal for this call to produce some messages / warnings.
In the `bitr` function, the param `fromType` should be the same as `keyType` from the `gseGO` function above (the annotation source). This param is used again in the next two steps: creating `dedup_ids` and `df2`.
`toType` in the `bitr` function has to be one of the available options from `keyTypes(org.Dm.eg.db)` and must map to one of 'kegg', 'ncbi-geneid', 'ncib-proteinid' or 'uniprot' because `gseKEGG()` only accepts one of these 4 options as it's `keytype` parameter. In the case of org.Dm.eg.db, none of those 4 types are available, but 'ENTREZID' are the same as ncbi-geneid for org.Dm.eg.db so we use this for `toType`.
As our intial input, we use `original_gene_list` which we created above.
## Prepare Data
```{r}
# Convert gene IDs for enrichKEGG function
# We will lose some genes here because not all IDs will be converted
ids<-bitr(names(original_gene_list), fromType = "ENSEMBL", toType = "ENTREZID", OrgDb="org.Dm.eg.db")
# remove duplicate IDS (here I use "ENSEMBL", but it should be whatever was selected as keyType)
dedup_ids = ids[!duplicated(ids[c("ENSEMBL")]),]
# Create a new dataframe df2 which has only the genes which were successfully mapped using the bitr function above
df2 = df[df$X %in% dedup_ids$ENSEMBL,]
# Create a new column in df2 with the corresponding ENTREZ IDs
df2$Y = dedup_ids$ENTREZID
# Create a vector of the gene unuiverse
kegg_gene_list <- df2$log2FoldChange
# Name vector with ENTREZ ids
names(kegg_gene_list) <- df2$Y
# omit any NA values
kegg_gene_list<-na.omit(kegg_gene_list)
# sort the list in decreasing order (required for clusterProfiler)
kegg_gene_list = sort(kegg_gene_list, decreasing = TRUE)
# Exctract significant results from df2
kegg_sig_genes_df = subset(df2, padj < 0.05)
# From significant results, we want to filter on log2fold change
kegg_genes <- kegg_sig_genes_df$log2FoldChange
# Name the vector with the CONVERTED ID!
names(kegg_genes) <- kegg_sig_genes_df$Y
# omit NA values
kegg_genes <- na.omit(kegg_genes)
# filter on log2fold change (PARAMETER)
kegg_genes <- names(kegg_genes)[abs(kegg_genes) > 2]
```
## Create enrichKEGG object
**organism** KEGG Organism Code: The full list is here: https://www.genome.jp/kegg/catalog/org_list.html (need the 3 letter code). I define this as `kegg_organism` first, because it is used again below when making the pathview plots.
**keyType** one of 'kegg', 'ncbi-geneid', 'ncib-proteinid' or 'uniprot'.
```{r echo=TRUE}
kegg_organism = "dme"
kk <- enrichKEGG(gene=kegg_genes, universe=names(kegg_gene_list),organism=kegg_organism, pvalueCutoff = 0.05, keyType = "ncbi-geneid")
head(kk)
```
##Barplot
```{r echo=TRUE}
barplot(kk,
showCategory = 10,
title = "Enriched Pathways",
font.size = 8)
```
## Dotplot
```{r echo=TRUE}
dotplot(kk,
showCategory = 10,
title = "Enriched Pathways",
font.size = 8)
```
## Category Netplot:
The cnetplot depicts the linkages of genes and biological concepts (e.g. GO terms or KEGG pathways) as a network (helpful to see which genes are involved in enriched pathways and genes that may belong to multiple annotation categories).
```{r fig.width=12}
# categorySize can be either 'pvalue' or 'geneNum'
cnetplot(kk, categorySize="pvalue", foldChange=gene_list)
```
#Pathview
This will create a PNG and *different* PDF of the enriched KEGG pathway.
Params:
**gene.data** This is `kegg_gene_list` created above
**pathway.id** The user needs to enter this. Enriched pathways + the pathway ID are provided in the gseKEGG output table (above).
**species** Same as `organism` above in `gseKEGG`, which we defined as `kegg_organism`
**gene.idtype** The index number (first index is 1) correspoding to your keytype from this list `gene.idtype.list`
```{r, message=F, warning=F, echo = TRUE}
library(pathview)
# Produce the native KEGG plot (PNG)
dme <- pathview(gene.data=gene_list, pathway.id="dme04080", species = "dme", gene.idtype=gene.idtype.list[3])
# Produce a different plot (PDF) (not displayed here)
dme <- pathview(gene.data=gene_list, pathway.id="dme04080", species = "dme", gene.idtype=gene.idtype.list[3], kegg.native = F)
```
```{r pressure, echo=TRUE, fig.cap="KEGG Native Enriched Pathway Plot", out.width = '100%'}
knitr::include_graphics("dme04080.pathview.png")
```