-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpatialBatchNormalization.lua
182 lines (158 loc) · 6.94 KB
/
SpatialBatchNormalization.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
--[[
This file implements Batch Normalization as described in the paper:
"Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift"
by Sergey Ioffe, Christian Szegedy
This implementation is useful for inputs coming from convolution layers.
For Non-convolutional layers, see BatchNormalization.lua
The operation implemented is:
y = ( x - mean(x) )
-------------------- * gamma + beta
standard-deviation(x)
where gamma and beta are learnable parameters.
The learning of gamma and beta is optional.
Usage:
with learnable parameters: nn.BatchNormalization(N [,eps] [,momentum])
where N = dimensionality of input
without learnable parameters: nn.BatchNormalization(0 [,eps] [,momentum])
eps is a small value added to the standard-deviation to avoid divide-by-zero.
Defaults to 1e-5
In training time, this layer keeps a running estimate of it's computed mean and std.
The running sum is kept with a default momentup of 0.1 (unless over-ridden)
In test time, this running mean/std is used to normalize.
]]--
local BN,parent = torch.class('nn.SpatialBatchNormalization', 'nn.Module')
function BN:__init(nFeature, eps, momentum, affine)
parent.__init(self)
assert(nFeature and type(nFeature) == 'number',
'Missing argument #1: Number of feature planes. ')
assert(nFeature ~= 0, 'To set affine=false call SpatialBatchNormalization'
.. '(nFeature, eps, momentum, false) ')
if affine ~=nil then
assert(type(affine) == 'boolean', 'affine has to be true/false')
self.affine = affine
else
self.affine = true
end
self.eps = eps or 1e-5
self.train = true
self.momentum = momentum or 0.1
self.running_mean = torch.zeros(nFeature)
self.running_std = torch.ones(nFeature)
if self.affine then
self.weight = torch.Tensor(nFeature)
self.bias = torch.Tensor(nFeature)
self.gradWeight = torch.Tensor(nFeature)
self.gradBias = torch.Tensor(nFeature)
self:reset()
end
end
function BN:reset()
self.weight:uniform()
self.bias:zero()
end
function BN:updateOutput(input)
assert(input:dim() == 4, 'only mini-batch supported (4D tensor), got '
.. input:dim() .. 'D tensor instead')
local nBatch = input:size(1)
local nFeature = input:size(2)
local iH = input:size(3)
local iW = input:size(4)
-- buffers that are reused
self.buffer = self.buffer or input.new()
self.output:resizeAs(input)
if self.train == false then
self.output:copy(input)
self.buffer:repeatTensor(self.running_mean:view(1, nFeature, 1, 1), nBatch, 1, iH, iW)
self.output:add(-1, self.buffer)
self.buffer:repeatTensor(self.running_std:view(1, nFeature, 1, 1), nBatch, 1, iH, iW)
self.output:cmul(self.buffer)
else -- training mode
self.buffer2 = self.buffer2 or input.new()
self.centered = self.centered or input.new()
self.centered:resizeAs(input)
self.std = self.std or input.new()
self.normalized = self.normalized or input.new()
self.normalized:resizeAs(input)
self.gradInput:resizeAs(input)
-- calculate mean over mini-batch, over feature-maps
local in_folded = input:view(nBatch, nFeature, iH * iW)
self.buffer:mean(in_folded, 1)
self.buffer2:mean(self.buffer, 3)
self.running_mean:mul(1 - self.momentum):add(self.momentum, self.buffer2) -- add to running mean
self.buffer:repeatTensor(self.buffer2:view(1, nFeature, 1, 1),
nBatch, 1, iH, iW)
-- subtract mean
self.centered:add(input, -1, self.buffer) -- x - E(x)
-- calculate standard deviation over mini-batch
self.buffer:copy(self.centered):cmul(self.buffer) -- [x - E(x)]^2
local buf_folded = self.buffer:view(nBatch,nFeature,iH*iW)
self.std:mean(self.buffer2:mean(buf_folded, 1), 3)
self.std:add(self.eps):sqrt():pow(-1) -- 1 / E([x - E(x)]^2)
self.running_std:mul(1 - self.momentum):add(self.momentum, self.std) -- add to running stdv
self.buffer:repeatTensor(self.std:view(1, nFeature, 1, 1),
nBatch, 1, iH, iW)
-- divide standard-deviation + eps
self.output:cmul(self.centered, self.buffer)
self.normalized:copy(self.output)
end
if self.affine then
-- multiply with gamma and add beta
self.buffer:repeatTensor(self.weight:view(1, nFeature, 1, 1),
nBatch, 1, iH, iW)
self.output:cmul(self.buffer)
self.buffer:repeatTensor(self.bias:view(1, nFeature, 1, 1),
nBatch, 1, iH, iW)
self.output:add(self.buffer)
end
return self.output
end
function BN:updateGradInput(input, gradOutput)
assert(input:dim() == 4, 'only mini-batch supported')
assert(gradOutput:dim() == 4, 'only mini-batch supported')
assert(self.train == true, 'should be in training mode when self.train is true')
local nBatch = input:size(1)
local nFeature = input:size(2)
local iH = input:size(3)
local iW = input:size(4)
self.gradInput:cmul(self.centered, gradOutput)
local gi_folded = self.gradInput:view(nBatch, nFeature, iH * iW)
self.buffer2:mean(self.buffer:mean(gi_folded, 1), 3)
self.gradInput:repeatTensor(self.buffer2:view(1, nFeature, 1, 1),
nBatch, 1, iH, iW)
self.gradInput:cmul(self.centered):mul(-1)
self.buffer:repeatTensor(self.std:view(1, nFeature, 1, 1),
nBatch, 1, iH, iW)
self.gradInput:cmul(self.buffer):cmul(self.buffer)
self.buffer:mean(gradOutput:view(nBatch, nFeature, iH*iW), 1)
self.buffer2:mean(self.buffer, 3)
self.buffer:repeatTensor(self.buffer2:view(1, nFeature, 1, 1),
nBatch, 1, iH, iW)
self.gradInput:add(gradOutput):add(-1, self.buffer)
self.buffer:repeatTensor(self.std:view(1, nFeature, 1, 1),
nBatch, 1, iH, iW)
self.gradInput:cmul(self.buffer)
if self.affine then
self.buffer:repeatTensor(self.weight:view(1, nFeature, 1, 1),
nBatch, 1, iH, iW)
self.gradInput:cmul(self.buffer)
end
return self.gradInput
end
function BN:accGradParameters(input, gradOutput, scale)
if self.affine then
scale = scale or 1.0
local nBatch = input:size(1)
local nFeature = input:size(2)
local iH = input:size(3)
local iW = input:size(4)
self.buffer2:resizeAs(self.normalized):copy(self.normalized)
self.buffer2 = self.buffer2:cmul(gradOutput):view(nBatch, nFeature, iH*iW)
self.buffer:sum(self.buffer2, 1) -- sum over mini-batch
self.buffer2:sum(self.buffer, 3) -- sum over pixels
self.gradWeight:add(scale, self.buffer2)
self.buffer:sum(gradOutput:view(nBatch, nFeature, iH*iW), 1)
self.buffer2:sum(self.buffer, 3)
self.gradBias:add(scale, self.buffer2) -- sum over mini-batch
end
end