-
Notifications
You must be signed in to change notification settings - Fork 0
/
Normalize.lua
87 lines (74 loc) · 2.31 KB
/
Normalize.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
local Normalize, parent = torch.class('nn.Normalize', 'nn.Module')
function Normalize:__init(p,eps)
parent.__init(self)
assert(p,'p-norm not provided')
assert(p > 0, p..'-norm not supported')
self.p = p
self.eps = eps or 1e-10
end
function Normalize:updateOutput(input)
assert(input:dim() <= 2, 'only 1d layer supported')
local is_batch = true
if input:dim() == 1 then
input = input:view(1,-1)
is_batch = false
end
self.output:resizeAs(input)
self.norm = self.norm or input.new()
self.normp = self.normp or input.new()
self.buffer = self.buffer or input.new()
if self.p % 2 ~= 0 then
self.buffer:abs(input):pow(self.p)
else
self.buffer:pow(input,self.p)
end
self.normp:sum(self.buffer,2):add(self.eps)
self.norm:pow(self.normp,1/self.p)
self.output:cdiv(input,self.norm:view(-1,1):expandAs(self.output))
if not is_batch then
self.output = self.output[1]
end
return self.output
end
function Normalize:updateGradInput(input, gradOutput)
assert(input:dim() <= 2, 'only 1d layer supported')
assert(gradOutput:dim() <= 2, 'only 1d layer supported')
local is_batch = true
if input:dim() == 1 then
input = input:view(1,-1)
is_batch = false
end
local n = input:size(1) -- batch size
local d = input:size(2) -- dimensionality of vectors
-- compute diagonal term
self.eye = self.eye or torch.eye(d):typeAs(input):view(1,d,d)
local eyeExpand = self.eye:expand(n,d,d)
self.diag = self.diag or self.eye.new()
self.diag:cmul(eyeExpand, self.normp:view(n,1,1):expand(n,d,d))
-- compute cross term
self.buffer:abs(input):pow(self.p-2):cmul(input)
local b1 = self.buffer:view(n,d,1)
local b2 = input:view(n,1,d)
self.diag:baddbmm(-1,b1,b2)
-- compute the local gradient of the Lp transformation
self.buffer:cmul(self.normp,self.norm)
self.diag:cdiv(self.buffer:view(n,1,1):expand(n,d,d))
-- chain the gradient
self.gradInput:resize(n,d,1)
self.gradInput:bmm(self.diag, gradOutput:view(n,d,1))
self.gradInput = self.gradInput:view(n,d)
if not is_batch then
self.gradInput = self.gradInput[1]
end
return self.gradInput
end
function Normalize:__tostring__()
local s
-- different prints if the norm is integer
if self.p % 1 == 0 then
s = '%s(%d)'
else
s = '%s(%f)'
end
return string.format(s,torch.type(self),self.p)
end