-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathmodel.lua
81 lines (69 loc) · 3 KB
/
model.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
local utils = require "utils"
-- Convenience layers
function convRelu(model, inputLayers, hiddenLayers, cnnKernel, cnnStride, cnnPad)
model:add(nn.SpatialConvolution(inputLayers, hiddenLayers, cnnKernel, cnnKernel, cnnStride, cnnStride, cnnPad, cnnPad))
model:add(nn.ReLU())
end
function convReluPool(model, inputLayers, hiddenLayers, cnnKernel, cnnStride, cnnPad, poolKernel, poolStride, poolPad)
model:add(nn.SpatialConvolution(inputLayers, hiddenLayers, cnnKernel, cnnKernel, cnnStride, cnnStride, cnnPad, cnnPad))
model:add(nn.ReLU())
model:add(nn.SpatialMaxPooling(poolKernel, poolKernel, poolStride, poolStride, poolPad, poolPad))
end
function model(kwargs)
assert(kwargs ~= nil)
local numClasses = utils.getKwarg(kwargs, "numClasses")
local numChannels = utils.getKwarg(kwargs, "numChannels")
local scale = utils.getKwarg(kwargs, "scale")
local cnn = {
conv1Channels = math.floor(96 * scale), -- 96; 384x384 input image -> 95; pool 95 -> 47
conv1Kernel = 11, -- 256 -> 63; pool 63 -> 31
conv1Stride = 4,
conv1Pad = 2,
pool1Kernel = 3,
pool1Stride = 2,
pool1Pad = 0,
conv2Channels = math.floor(256 * scale), -- 256; 47 -> 47; pool 47 -> 23
conv2Kernel = 5, -- 31 -> 31; pool 31 -> 15
conv2Stride = 1,
conv2Pad = 2,
pool2Kernel = 3,
pool2Stride = 2,
pool2Pad = 0,
conv3Channels = math.floor(384 * scale), -- 384; 23 -> 23
conv3Kernel = 3, -- 15 -> 15
conv3Stride = 1,
conv3Pad = 1,
conv4Channels = math.floor(384 * scale), -- 384; 23 -> 23
conv4Kernel = 3, -- 15 -> 15
conv4Stride = 1,
conv4Pad = 1,
conv5Channels = math.floor(256 * scale), -- 256; 23 -> 23, pool 23 -> 11
conv5Kernel = 3, -- 15 -> 15; pool 15 -> 7
conv5Stride = 1,
conv5Pad = 1,
pool5Kernel = 3,
pool5Stride = 2,
pool5Pad = 0,
fc6Channels = math.floor(4096 * scale), -- 4096
fc7Channels = math.floor(4096 * scale) -- 4096
}
local model = nn.Sequential()
convReluPool(model, numChannels, cnn.conv1Channels, cnn.conv1Kernel, cnn.conv1Stride, cnn.conv1Pad,
cnn.pool1Kernel, cnn.pool1Stride, cnn.pool1Pad)
convReluPool(model, cnn.conv1Channels, cnn.conv2Channels, cnn.conv2Kernel, cnn.conv2Stride, cnn.conv2Pad,
cnn.pool2Kernel, cnn.pool2Stride, cnn.pool2Pad)
convRelu(model, cnn.conv2Channels, cnn.conv3Channels, cnn.conv3Kernel, cnn.conv3Stride, cnn.conv3Pad)
convRelu(model, cnn.conv3Channels, cnn.conv4Channels, cnn.conv4Kernel, cnn.conv4Stride, cnn.conv4Pad)
convReluPool(model, cnn.conv4Channels, cnn.conv5Channels, cnn.conv5Kernel, cnn.conv5Stride, cnn.conv5Pad,
cnn.pool5Kernel, cnn.pool5Stride, cnn.pool5Pad)
model:add(nn.View(cnn.conv5Channels * 7 * 7))
model:add(nn.Dropout(0.5))
model:add(nn.Linear(cnn.conv5Channels * 7 * 7, cnn.fc6Channels))
model:add(nn.Threshold(0, 1e-6))
model:add(nn.Dropout(0.5))
model:add(nn.Linear(cnn.fc6Channels, cnn.fc7Channels))
model:add(nn.Threshold(0, 1e-6))
model:add(nn.Linear(cnn.fc7Channels, numClasses))
model:add(nn.LogSoftMax())
return model
end