-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathDataLoader.lua
263 lines (222 loc) · 8.1 KB
/
DataLoader.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
-- DATALOADER
require "nn"
require "torch"
require "image"
require "paths"
local utils = require "utils"
GLASS = 1
PAPER = 2
CARDBOARD = 3
PLASTIC = 4
METAL = 5
TRASH = 6
local DataLoader = torch.class("DataLoader")
function DataLoader:__init(kwargs)
self.splits = {
train = {},
val = {},
test = {}
}
self.splits.train.list = utils.getKwarg(kwargs, "trainList")
self.splits.test.list = utils.getKwarg(kwargs, "testList")
self.splits.val.list = utils.getKwarg(kwargs, "valList")
self.opt = {
inputHeight = utils.getKwarg(kwargs, "inputHeight"),
inputWidth = utils.getKwarg(kwargs, "inputWidth"),
scaledHeight = utils.getKwarg(kwargs, "scaledHeight"),
scaledWidth = utils.getKwarg(kwargs, "scaledWidth"),
numChannels = utils.getKwarg(kwargs, "numChannels"),
batchSize = utils.getKwarg(kwargs, "batchSize"),
dataFolder = utils.getKwarg(kwargs, "dataFolder")
}
for split, _ in pairs(self.splits) do
self.splits[split].index = 1
self.splits[split].file = paths.basename(self.splits[split].list)
self.splits[split].filePaths, self.splits[split].labels = loadList(self.splits[split].list, self.opt)
self.splits[split].count = #self.splits[split].filePaths
end
self.meanImage = getMeanTrainingImage(self.splits.train.filePaths, self.opt)
end
function DataLoader:nextBatch(split, augment)
assert(split == "train" or split == "val" or split == "test")
local imageData = {}
local imageLabels = {}
while #imageData < self.opt.batchSize do
local index = self.splits[split].index
local imagePath = self.splits[split].filePaths[index]
local imageLabel = self.splits[split].labels[index]
local imageTensor = image.load(imagePath, self.opt.numChannels, "double")
imageTensor = image.scale(imageTensor, "%dx%d" % {self.opt.scaledHeight, self.opt.scaledWidth})
imageTensor = imageTensor - self.meanImage
if split == "train" and augment == true then
-- imageTensor = warp(imageTensor, torch.random(0, 3), 0.05)
local transform = torch.random(1, 4)
if transform == 1 then
imageTensor = randomCrop(imageTensor, math.floor(self.opt.scaledHeight / 20))
elseif transform == 2 then
imageTensor = horizontalFlip(imageTensor, 0.5)
elseif transform == 3 then
imageTensor = addNoise(imageTensor, torch.uniform(-5, 5))
end
end
imageTensor = imageTensor:double()
imageTensor = imageTensor:reshape(1, self.opt.numChannels, self.opt.scaledHeight, self.opt.scaledWidth)
table.insert(imageData, imageTensor)
table.insert(imageLabels, torch.Tensor({imageLabel}))
self.splits[split].index = self.splits[split].index + 1
if self.splits[split].index > self.splits[split].count then
self.splits[split].index = 1
break
end
end
collectgarbage()
local batch = {
data = torch.cat(imageData, 1):type("torch.FloatTensor"),
labels = torch.cat(imageLabels, 1):type("torch.FloatTensor"),
}
setmetatable(batch,
{__index = function(t, k)
return {t.data[k], t.labels[k]}
end}
);
function batch:size()
return self.data:size(1)
end
return batch
end
-- Scale and Rotation augmentation (warping)
function warp(input, augRot, augScale)
-- A nice function of scale is 0.05 (stddev of scale change),
-- and a nice value for ration is a few degrees or more if your dataset allows for it
local width = input:size(3)
local height = input:size(2)
-- Scale <0=zoom in(+rand crop), >0=zoom out
local scale_x = 0
local scale_y = 0
local move_x = 0
local move_y = 0
if augScale > 0 then
scale_x = torch.normal(0, augScale) -- normal distribution
-- Given a zoom in or out, we move around our canvas.
scale_y = scale_x -- keep aspect ratio the same
move_x = torch.uniform(-scale_x, scale_x)
move_y = torch.uniform(-scale_y, scale_y)
end
-- Angle of rotation
local rot_angle = torch.uniform(-augRot,augRot) -- (degrees) uniform distribution [-augRot : augRot)
-- x/y grids
local grid_x = torch.ger( torch.ones(height), torch.linspace(-1-scale_x,1+scale_x,width) )
local grid_y = torch.ger( torch.linspace(-1-scale_y,1+scale_y,height), torch.ones(width) )
local flow = torch.FloatTensor()
flow:resize(2,height,width)
flow:zero()
-- Apply scale
flow_scale = torch.FloatTensor()
flow_scale:resize(2,height,width)
flow_scale[1] = grid_y
flow_scale[2] = grid_x
flow_scale[1]:add(1+move_y):mul(0.5) -- move ~[-1 1] to ~[0 1]
flow_scale[2]:add(1+move_x):mul(0.5) -- move ~[-1 1] to ~[0 1]
flow_scale[1]:mul(height-1)
flow_scale[2]:mul(width-1)
flow:add(flow_scale)
if augRot > 0 then
-- Apply rotation through rotation matrix
local flow_rot = torch.FloatTensor()
flow_rot:resize(2,height,width)
flow_rot[1] = grid_y * ((height-1)/2) * -1
flow_rot[2] = grid_x * ((width-1)/2) * -1
view = flow_rot:reshape(2,height*width)
local function rmat(deg)
local r = deg/180*math.pi
return torch.FloatTensor{{math.cos(r), -math.sin(r)}, {math.sin(r), math.cos(r)}}
end
local rotmat = rmat(rot_angle)
local flow_rotr = torch.mm(rotmat, view)
flow_rot = flow_rot - flow_rotr:reshape( 2, height, width )
flow:add(flow_rot)
end
return image.warp(input, flow, "bilinear", false)
end
function randomCrop(input, size)
local w, h = input:size(3), input:size(2)
if w == size and h == size then
return input
end
local x1, y1 = torch.random(1, w - size), torch.random(1, h - size)
input[{{}, {x1, x1 + size}, {y1, y1 + size}}] = 0
return input
end
function horizontalFlip(input, prob)
if torch.uniform() < prob then
return image.hflip(input)
end
return input
end
-- Adds noise to the image
-- ref: https://github.com/brainstorm-ai/DIGITS/blob/6a150cfbed2aa7dd70992036dfbdf66ee088fba0/tools/torch/data.lua#L135
function addNoise(input, augNoise)
-- AWGN:
-- torch.randn makes noise with mean 0 and variance 1 (=stddev 1)
-- so we multiply the tensor with our augNoise factor, that has a linear relation with
-- the standard deviation (but the variance will be increased quadratically).
return torch.add(input:float(), torch.randn(input:size()):float()*augNoise)
end
function loadList(fileListPath, opt)
local filePaths = {}
local fileLabels = {}
local file, err = io.open(fileListPath, "rb")
if err then
utils.printTime(err)
return
else
while true do
local line = file:read()
if line == nil then
break
end
-- get tokens from line containing video path and label
local tokens = {}
for token in string.gmatch(line, "[^%s]+") do
table.insert(tokens, token)
end
local filePath, fileLabel = unpack(tokens)
fileLabel = tonumber(fileLabel)
if fileLabel == GLASS then
filePath = paths.concat(opt.dataFolder, "glass", filePath)
elseif fileLabel == PAPER then
filePath = paths.concat(opt.dataFolder, "paper", filePath)
elseif fileLabel == CARDBOARD then
filePath = paths.concat(opt.dataFolder, "cardboard", filePath)
elseif fileLabel == PLASTIC then
filePath = paths.concat(opt.dataFolder, "plastic", filePath)
elseif fileLabel == METAL then
filePath = paths.concat(opt.dataFolder, "metal", filePath)
elseif fileLabel == TRASH then
filePath = paths.concat(opt.dataFolder, "trash", filePath)
end
table.insert(filePaths, filePath)
table.insert(fileLabels, fileLabel)
end
end
return filePaths, fileLabels
end
function getMeanTrainingImage(filePaths, opt)
local means = {0, 0, 0}
local numImages = 0
for i, filePath in pairs(filePaths) do
collectgarbage()
numImages = numImages + 1
local img = image.load(filePath, opt.numChannels, "double")
img = image.scale(img, "%dx%d" % {opt.scaledHeight, opt.scaledWidth})
for channel = 1, opt.numChannels do
means[channel] = means[channel] + (img[channel]:mean() - means[channel]) / numImages
end
end
local meanImage = torch.Tensor(opt.numChannels, opt.scaledHeight, opt.scaledWidth)
for channel = 1, opt.numChannels do
meanImage[channel]:fill(means[channel])
end
collectgarbage()
return meanImage
end