-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_confs.py
250 lines (223 loc) · 6.55 KB
/
plot_confs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from geopy.geocoders import Nominatim
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import pickle
# Visualize how top tier conferences move
class citylocs():
cities = {}
geolocator = Nominatim(user_agent="MyApp")
def __init__(self):
try:
with open('cities.pickle', 'rb') as cache:
self.cities = pickle.load(cache)
cache.close()
except:
self.cities = {}
def get_loc(self, city):
if city not in self.cities:
loc = self.geolocator.geocode(city, timeout=None)
if loc == None:
print('City {} not found'.format(city))
self.cities[city] = (loc.address, loc.latitude, loc.longitude)
with open('cities.pickle', 'wb') as cache:
pickle.dump(self.cities, cache)
cache.close()
print(self.cities[city])
return self.cities[city]
cl = citylocs()
def get_locs(cities):
lats = []
lons = []
city_names = []
for city in cities:
loc = cl.get_loc(city)
lats.append(loc[1])
lons.append(loc[2])
city_names.append(city)
return (lats, lons, city_names)
def add_locs(fig, cities, col, name):
lats, lons, cities = get_locs(cities)
fig.add_trace(go.Scattergeo(
lat = lats,
lon = lons,
hoverinfo = 'text',
text = cities,
name = name,
mode = 'markers',
marker = dict(
size = 5,
color = col,
line = dict(
width = 3,
color = col
)
)))
for i in range(len(cities)-1):
fig.add_trace(
go.Scattergeo(
lat = [lats[i], lats[i+1]],
lon = [lons[i], lons[i+1]],
mode = 'lines',
line = dict(width = 2, color = col),
showlegend = False,
hoverinfo = 'skip',
)
)
usenix_sec_cities = [
'San Diego, USA', # 2014
'Washington, D.C., USA', # 2015
'Austin, USA', # 2016
'Vancouver, Canada', # 2017
'Baltimore, USA', # 2018
'Santa Clara, USA', # 2019
# virtual
# virtual
'Boston, USA', # 2022
'Anaheim, USA', # 2023
'Philadelphia, USA', # 2024
]
ndss_cities = [
'San Diego, USA'
]
oakland_cities = [
'Berkeley, USA', # 2014
'San Jose, USA', # 2015
'San Jose, USA', # 2016
'San Jose, USA', # 2017
'San Francisco, USA', # 2018
'San Francisco, USA', # 2019
'San Francisco, USA', # 2020
'San Francisco, USA', # 2021
'San Francisco, USA', # 2022
'San Francisco, USA', # 2023
'San Francisco, USA', # 2024
]
ccs_cities = [
'Scottsdale, USA', # 2014
'Denver, USA', # 2015
'Vienna, Austria', # 2016
'Dallas, USA', # 2017
'Toronto, Canada', # 2018
'London, UK', # 2019
# virtual
# virtual
'Los Angeles, USA', # 2022
'Copenhagen, Denmark', # 2023
'Salt Lake City, USA', # 2024
]
micro_cities = [
'Davis, USA', # 2014
'Cambridge, UK', # 2015
'Waikiki, USA', # 2016
'Taipei, Taiwan', # 2017
'Boston, USA', # 2018
'Fukuoka, Japan', # 2019
'Columbus, USA', # 2020
# 'virtual'
# 'virtual'
'Chicago, USA', # 2022
'Toronto, Canada', # 2023
'Austin, USA', # 2024
]
isca_cities = [
'Minneapolis, USA', # 2014
'Portland, USA', # 2015
'Seoul, South Korea', # 2016
'Toronto, Canada', # 2017
'Los Angeles, USA', # 2018
'Phoenix, USA', # 2019
# virtual
# virtual
'New York, USA', # 2022
'Orlando, USA', # 2023
'Buenos Aires, Argentina', # 2024
]
asplos_cities = [
'Salt Lake City, USA',# 2014
'Istanbul, Turkey', # 2015
'Atlanta, USA', # 2016
"Xi'an, China", # 2017
'Williamsburg, USA', # 2018
'Providence, USA', # 2019
#virtual
# virtual
'Lausanne, Switzerland', # 2022
'Vancouver, Canada', # 2023
'San Diego, USA', # 2024
]
sosp_cities = [
'Monterey, USA', # 2015
'Shanghai, China', # 2017
'Huntsville, Canada', # 2019
# virtual
'Koblenz, Germany', # 2023
]
osdi_cities = [
'Broomfield, USA', # 2014
'Savannah, USA', # 2016
'Carlsbad, USA', # 2018
# virtual 2020
# virtual 2021
'Carlsbad, USA', # 2022
'Boston, USA', # 2024
]
fse_cities = [
'Hong Kong, China', # 2014
'Bergamo, Italy', # 2015
'Seattle, USA', # 2016
'Paderborn, Germany', # 2017
'Lake Buena Vista, FL, USA', # 2018
'Tallinn, Estonia', # 2019
# virtual
'Athens, Greece', # 2021
'Singapore', # 2022
'San Francisco, USA', # 2023
'Porto de Galinhas, Brazil', # 2024
]
icse_cities = [
'Hyderabad, India', # 2014
'Florence, Italy', # 2015
'Austin, USA', # 2016
'Buenos Aires, Argentina', # 2017
'Gothenburg, Sweden', # 2018
'Montreal, Canada', # 2019
'Seoul, South Korea', # 2020
'Madrid, Spain', # 2021
'Pittsburgh, USA', # 2022
'Melbourne, Australia', # 2023
'Lisbon, Portugal', # 2024
]
fig = go.Figure()
add_locs(fig, usenix_sec_cities, 'rgb(139, 0, 0)', 'USENIX SEC') # Dark Red
add_locs(fig, ndss_cities, 'rgb(204, 85, 0)', 'ISOC NDSS') # Burnt Orange
add_locs(fig, oakland_cities, 'rgb(210, 43, 43)', 'IEEE SSP') # Cadmium Red
add_locs(fig, ccs_cities, 'rgb(210, 4, 45)', 'ACM CCS') # Cherry
# Architecture
add_locs(fig, micro_cities, 'rgb(34, 139, 34)', 'MICRO') # Forest Green
add_locs(fig, isca_cities, 'rgb(76, 187, 23)', 'ISCA') # Kelly Green
# Systems
add_locs(fig, asplos_cities, 'rgb(0, 71, 171)', 'ASPLOS') # Cobald Blue
add_locs(fig, sosp_cities, 'rgb(0, 0, 139)', 'SOSP') # Dark Blue
add_locs(fig, osdi_cities, 'rgb(63, 0, 255)', 'OSDI') # Indigo
# SE
add_locs(fig, fse_cities, 'rgb(255, 191, 0)', 'FSE') # Amber
add_locs(fig, icse_cities, 'rgb(253, 218, 13)', 'ICSE') # Cadmium Yellow
fig.update_layout(
title_text = 'Conference Locations for Security/Architecture/Systems/Software Engineering: From 2014 to 2024',
#showlegend = True,
#autosize=True,
geo = dict(
# scope = 'north america',
# projection_type = 'azimuthal equal area',
projection_rotation=dict(
lat=0,
lon=-115
),
showland = True,
landcolor = 'rgb(243, 243, 243)',
countrycolor = 'rgb(204, 204, 204)',
),
)
fig.show()
fig.write_html('conf_locs.html')