forked from ankush-me/SynthText
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgen.py
164 lines (142 loc) · 5.57 KB
/
gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
#-*- coding: utf-8 -*-
# Author: Ankush Gupta
# Date: 2015
"""
Entry-point for generating synthetic text images, as described in:
@InProceedings{Gupta16,
author = "Gupta, A. and Vedaldi, A. and Zisserman, A.",
title = "Synthetic Data for Text Localisation in Natural Images",
booktitle = "IEEE Conference on Computer Vision and Pattern Recognition",
year = "2016",
}
"""
import numpy as np
import h5py
import os, sys, traceback
import os.path as osp
from synthgen import *
from common import *
import wget, tarfile
import cv2
## Define some configuration variables:
NUM_IMG = -1 # no. of images to use for generation (-1 to use all available):
INSTANCE_PER_IMAGE = 1 # no. of times to use the same image
SECS_PER_IMG = 5 # max time per image in seconds
# path to the data-file, containing image, depth and segmentation:
DATA_PATH = 'data'
DB_FNAME = osp.join(DATA_PATH, 'dset.h5')
# url of the data (google-drive public file):
DATA_URL = 'http://www.robots.ox.ac.uk/~ankush/data.tar.gz'
OUT_FILE = 'results/SynthText.h5'
OUT_DIR = 'results'
def get_data():
"""
Download the image,depth and segmentation data:
Returns, the h5 database.
"""
if not osp.exists(DB_FNAME):
try:
colorprint(Color.BLUE, '\tdownloading data (56 M) from: ' + DATA_URL, bold=True)
print
sys.stdout.flush()
out_fname = 'data.tar.gz'
wget.download(DATA_URL, out=out_fname)
tar = tarfile.open(out_fname)
tar.extractall()
tar.close()
os.remove(out_fname)
colorprint(Color.BLUE, '\n\tdata saved at:' + DB_FNAME, bold=True)
sys.stdout.flush()
except:
print colorize(Color.RED, 'Data not found and have problems downloading.', bold=True)
sys.stdout.flush()
sys.exit(-1)
# open the h5 file and return:
return h5py.File(DB_FNAME, 'r')
def add_res_to_db(imgname, res, db):
"""
Add the synthetically generated text image instance
and other metadata to the dataset.
"""
ninstance = len(res)
for i in xrange(ninstance):
dname = "%s_%d" % (imgname, i)
db['data'].create_dataset(dname, data=res[i]['img'])
db['data'][dname].attrs['charBB'] = res[i]['charBB']
db['data'][dname].attrs['wordBB'] = res[i]['wordBB']
text_utf8 = [char.encode('utf8') for char in res[i]['txt']]
db['data'][dname].attrs['txt'] = text_utf8
def save_res_to_imgs(imgname, res):
"""
Add the synthetically generated text image instance
and other metadata to the dataset.
"""
ninstance = len(res)
for i in xrange(ninstance):
filename = "{}/{}_{}.png".format(OUT_DIR, imgname, i)
# Swap bgr to rgb so we can save into image file
img = res[i]['img'][..., [2, 1, 0]]
cv2.imwrite(filename, img)
def main(viz=False):
# open databases:
print colorize(Color.BLUE, 'getting data..', bold=True)
db = get_data()
print colorize(Color.BLUE, '\t-> done', bold=True)
# open the output h5 file:
out_db = h5py.File(OUT_FILE,'w')
out_db.create_group('/data')
print colorize(Color.GREEN,'Storing the output in: '+OUT_FILE, bold=True)
# get the names of the image files in the dataset:
imnames = sorted(db['image'].keys())
N = len(imnames)
global NUM_IMG
if NUM_IMG < 0:
NUM_IMG = N
start_idx, end_idx = 0, min(NUM_IMG, N)
RV3 = RendererV3(DATA_PATH, max_time=SECS_PER_IMG, lang=args.lang)
for i in xrange(start_idx, end_idx):
imname = imnames[i]
try:
# get the image:
img = Image.fromarray(db['image'][imname][:])
# get the pre-computed depth:
# there are 2 estimates of depth (represented as 2 "channels")
# here we are using the second one (in some cases it might be
# useful to use the other one):
depth = db['depth'][imname][:].T
depth = depth[:, :, 1]
# get segmentation:
seg = db['seg'][imname][:].astype('float32')
area = db['seg'][imname].attrs['area']
label = db['seg'][imname].attrs['label']
# re-size uniformly:
sz = depth.shape[:2][::-1]
img = np.array(img.resize(sz, Image.ANTIALIAS))
seg = np.array(Image.fromarray(seg).resize(sz, Image.NEAREST))
print colorize(Color.RED, '%d of %d' % (i, end_idx - 1), bold=True)
res = RV3.render_text(img, depth, seg, area, label,
ninstance=INSTANCE_PER_IMAGE, viz=viz)
if len(res) > 0:
# non-empty : successful in placing text:
add_res_to_db(imname,res,out_db)
# visualize the output:
if viz:
save_res_to_imgs(imname, res)
if 'q' in raw_input(colorize(Color.RED, 'continue? (enter to continue, q to exit): ', True)):
break
except:
traceback.print_exc()
print colorize(Color.GREEN, '>>>> CONTINUING....', bold=True)
continue
db.close()
out_db.close()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Genereate Synthetic Scene-Text Images')
parser.add_argument('--viz', action='store_true', dest='viz', default=False,
help='flag for turning on visualizations')
parser.add_argument('--lang', default='ENG',
help='Select language : ENG/JPN')
args = parser.parse_args()
main(args.viz)