-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_teacher_validation.py
242 lines (208 loc) · 9.83 KB
/
run_teacher_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
import torch
from torch.utils.data import DataLoader
import argparse
import torch.nn.functional as F
import os
from torch.hub import download_url_to_file
from datasets.dcase23 import get_test_set
from helpers.init import worker_init_fn
from models.cp_resnet import get_model as get_cpresnet
from models.passt import get_model as get_passt
from models.mel import AugmentMelSTFT
pretrained_models_url = "https://github.com/fschmid56/cpjku_dcase23/releases/download/ensemble_logits/"
class PLModule(pl.LightningModule):
def __init__(self, config, model_config):
super().__init__()
self.config = config
self.mel = AugmentMelSTFT(**model_config['mel'])
get_model_fn = model_config['model_fn']
self.model = get_model_fn(**model_config["net"])
# load pre-trained model parameters
state_dict_file = os.path.join("resources", f"{config.model_name}.pt")
if not os.path.isfile(state_dict_file):
print("Download pre-trained weights.")
download_url_to_file(os.path.join(pretrained_models_url, f"{config.model_name}.pt"), state_dict_file)
pretrained_weights = torch.load(state_dict_file)
self.model.load_state_dict(pretrained_weights)
self.device_ids = ['a', 'b', 'c', 's1', 's2', 's3', 's4', 's5', 's6']
self.label_ids = ['airport', 'bus', 'metro', 'metro_station', 'park', 'public_square', 'shopping_mall',
'street_pedestrian', 'street_traffic', 'tram']
# categorization of devices into 'real', 'seen' and 'unseen'
self.device_groups = {'a': "real", 'b': "real", 'c': "real",
's1': "seen", 's2': "seen", 's3': "seen",
's4': "unseen", 's5': "unseen", 's6': "unseen"}
def mel_forward(self, x):
"""
@param x: a batch of raw signals (waveform)
return: a batch of log mel spectrograms
"""
old_shape = x.size()
x = x.reshape(-1, old_shape[2]) # for calculating log mel spectrograms we remove the channel dimension
x = self.mel(x)
x = x.reshape(old_shape[0], old_shape[1], x.shape[1], x.shape[2]) # batch x channels x mels x time-frames
return x
def forward(self, x):
"""
:param x: batch of raw audio signals (waveforms)
:return: final model predictions
"""
x = self.mel_forward(x)
x = self.model(x)
return x
def validation_step(self, val_batch, batch_idx):
x, files, labels, devices, cities = val_batch
x = self.mel_forward(x)
model_out = self.model(x)
if len(model_out) == 2:
y_hat = model_out[0]
else:
y_hat = model_out
samples_loss = F.cross_entropy(y_hat, labels, reduction="none")
loss = samples_loss.mean()
# for computing accuracy
_, preds = torch.max(y_hat, dim=1)
n_correct_pred_per_sample = (preds == labels)
n_correct_pred = n_correct_pred_per_sample.sum()
dev_names = [d.rsplit("-", 1)[1][:-4] for d in files]
results = {'val_loss': loss, "n_correct_pred": n_correct_pred, "n_pred": len(labels)}
# log metric per device and scene
for d in self.device_ids:
results["devloss." + d] = torch.as_tensor(0., device=self.device)
results["devcnt." + d] = torch.as_tensor(0., device=self.device)
results["devn_correct." + d] = torch.as_tensor(0., device=self.device)
for i, d in enumerate(dev_names):
results["devloss." + d] = results["devloss." + d] + samples_loss[i]
results["devn_correct." + d] = results["devn_correct." + d] + n_correct_pred_per_sample[i]
results["devcnt." + d] = results["devcnt." + d] + 1
for l in self.label_ids:
results["lblloss." + l] = torch.as_tensor(0., device=self.device)
results["lblcnt." + l] = torch.as_tensor(0., device=self.device)
results["lbln_correct." + l] = torch.as_tensor(0., device=self.device)
for i, l in enumerate(labels):
results["lblloss." + self.label_ids[l]] = results["lblloss." + self.label_ids[l]] + samples_loss[i]
results["lbln_correct." + self.label_ids[l]] = \
results["lbln_correct." + self.label_ids[l]] + n_correct_pred_per_sample[i]
results["lblcnt." + self.label_ids[l]] = results["lblcnt." + self.label_ids[l]] + 1
return results
def validation_epoch_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
val_acc = sum([x['n_correct_pred'] for x in outputs]) * 1.0 / sum(x['n_pred'] for x in outputs)
logs = {'val_acc': val_acc, 'val_loss': avg_loss}
# log metric per device and scene
for d in self.device_ids:
dev_loss = torch.stack([x["devloss." + d] for x in outputs]).sum()
dev_cnt = torch.stack([x["devcnt." + d] for x in outputs]).sum()
dev_corrct = torch.stack([x["devn_correct." + d] for x in outputs]).sum()
logs["vloss." + d] = dev_loss / dev_cnt
logs["vacc." + d] = dev_corrct / dev_cnt
logs["vcnt." + d] = dev_cnt
# device groups
logs["acc." + self.device_groups[d]] = logs.get("acc." + self.device_groups[d], 0.) + dev_corrct
logs["count." + self.device_groups[d]] = logs.get("count." + self.device_groups[d], 0.) + dev_cnt
logs["lloss." + self.device_groups[d]] = logs.get("lloss." + self.device_groups[d], 0.) + dev_loss
for d in set(self.device_groups.values()):
logs["acc." + d] = logs["acc." + d] / logs["count." + d]
logs["lloss." + d] = logs["lloss." + d] / logs["count." + d]
for l in self.label_ids:
lbl_loss = torch.stack([x["lblloss." + l] for x in outputs]).sum()
lbl_cnt = torch.stack([x["lblcnt." + l] for x in outputs]).sum()
lbl_corrct = torch.stack([x["lbln_correct." + l] for x in outputs]).sum()
logs["vloss." + l] = lbl_loss / lbl_cnt
logs["vacc." + l] = lbl_corrct / lbl_cnt
logs["vcnt." + l] = lbl_cnt
logs["macro_avg_acc"] = torch.mean(torch.stack([logs["vacc." + l] for l in self.label_ids]))
self.log_dict(logs)
def validate(config, model_config):
# logging is done using wandb
wandb_logger = WandbLogger(
project=config.project_name,
notes="CPJKU pipeline for DCASE23 Task 1.",
tags=["DCASE23"],
config=config, # this logs the hyperparameters for us
name=config.experiment_name
)
# test loader
test_dl = DataLoader(dataset=get_test_set(config.cache_path, model_config['mel']['sr']),
worker_init_fn=worker_init_fn,
num_workers=config.num_workers,
batch_size=config.batch_size)
# create pytorch lightening module
pl_module = PLModule(config, model_config)
trainer = pl.Trainer(logger=wandb_logger,
accelerator='auto',
devices=1
)
# start training and validation for the specified number of epochs
trainer.validate(pl_module, dataloaders=test_dl)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of parser. ')
# general
parser.add_argument('--project_name', type=str, default="DCASE23_Task1")
parser.add_argument('--experiment_name', type=str, default="CPJKU_Teacher_Validation")
parser.add_argument('--num_workers', type=int, default=12) # number of workers for dataloaders
# dataset
# location to store resampled waveform
parser.add_argument('--cache_path', type=str, default=os.path.join("datasets", "cpath"))
parser.add_argument('--batch_size', type=int, default=32)
# model
parser.add_argument('--model_name', type=str, default="passt_dirfms_1")
args = parser.parse_args()
if args.model_name in ["cpr_128k_dirfms_1",
"cpr_128k_dirfms_2",
"cpr_128k_dirfms_3",
"cpr_128k_fms_1",
"cpr_128k_fms_2",
"cpr_128k_fms_3"]:
model_config = {
"mel": {
"sr": 32000,
"n_mels": 256,
"win_length": 3072,
"hopsize": 750,
"n_fft": 4096,
"fmax": None,
"fmax_aug_range": 1000,
"fmin": 0,
"fmin_aug_range": 1
},
"net": {
# "rho": 8,
# "base_channels": 32,
# "maxpool_stage1": [1],
# "maxpool_kernel": (2, 1),
# "maxpool_stride": (2, 1)
},
"model_fn": get_cpresnet
}
elif args.model_name in ["passt_dirfms_1",
"passt_dirfms_2",
"passt_dirfms_3",
"passt_fms_1",
"passt_fms_2",
"passt_fms_3"]:
model_config = {
"mel": {
"sr": 32000,
"n_mels": 128,
"win_length": 800,
"hopsize": 320,
"n_fft": 1024,
"fmax": None,
"fmax_aug_range": 1000,
"fmin": 0,
"fmin_aug_range": 1
},
"net": {
"arch": "passt_s_swa_p16_128_ap476",
"n_classes": 10,
"input_fdim": 128,
"s_patchout_t": 0,
"s_patchout_f": 6
},
"model_fn": get_passt
}
else:
raise NotImplementedError(f"No model with model name {args.model_name} in resources folder!")
validate(args, model_config)