-
Notifications
You must be signed in to change notification settings - Fork 11
/
data_aug.py
197 lines (167 loc) · 8.76 KB
/
data_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#Some codes are adopted from https://github.com/DCASE-REPO/DESED_task
import torch
import numpy as np
import random
def filt_aug(features, db_range=[-6, 6], n_band=[3, 6], min_bw=6, filter_type="linear"):
# this is updated FilterAugment algorithm used for ICASSP 2022
if not isinstance(filter_type, str):
if torch.rand(1).item() < filter_type:
filter_type = "step"
n_band = [2, 5]
min_bw = 4
else:
filter_type = "linear"
n_band = [3, 6]
min_bw = 6
batch_size, n_freq_bin, _ = features.shape
n_freq_band = torch.randint(low=n_band[0], high=n_band[1], size=(1,)).item() # [low, high)
if n_freq_band > 1:
while n_freq_bin - n_freq_band * min_bw + 1 < 0:
min_bw -= 1
band_bndry_freqs = torch.sort(torch.randint(0, n_freq_bin - n_freq_band * min_bw + 1,
(n_freq_band - 1,)))[0] + \
torch.arange(1, n_freq_band) * min_bw
band_bndry_freqs = torch.cat((torch.tensor([0]), band_bndry_freqs, torch.tensor([n_freq_bin])))
if filter_type == "step":
band_factors = torch.rand((batch_size, n_freq_band)).to(features) * (db_range[1] - db_range[0]) + db_range[0]
band_factors = 10 ** (band_factors / 20)
freq_filt = torch.ones((batch_size, n_freq_bin, 1)).to(features)
for i in range(n_freq_band):
freq_filt[:, band_bndry_freqs[i]:band_bndry_freqs[i + 1], :] = band_factors[:, i].unsqueeze(-1).unsqueeze(-1)
elif filter_type == "linear":
band_factors = torch.rand((batch_size, n_freq_band + 1)).to(features) * (db_range[1] - db_range[0]) + db_range[0]
freq_filt = torch.ones((batch_size, n_freq_bin, 1)).to(features)
for i in range(n_freq_band):
for j in range(batch_size):
freq_filt[j, band_bndry_freqs[i]:band_bndry_freqs[i+1], :] = \
torch.linspace(band_factors[j, i], band_factors[j, i+1],
band_bndry_freqs[i+1] - band_bndry_freqs[i]).unsqueeze(-1)
freq_filt = 10 ** (freq_filt / 20)
return features * freq_filt
else:
return features
def filt_aug_prototype(features, db_range=(-7.5, 6), n_bands=(2, 5)):
# this is FilterAugment algorithm used for DCASE 2021 Challeng Task 4
batch_size, n_freq_bin, _ = features.shape
n_freq_band = torch.randint(low=n_bands[0], high=n_bands[1], size=(1,)).item() # [low, high)
if n_freq_band > 1:
band_bndry_freqs = torch.cat((torch.tensor([0]),
torch.sort(torch.randint(1, n_freq_bin-1, (n_freq_band - 1, )))[0],
torch.tensor([n_freq_bin])))
band_factors = torch.rand((batch_size, n_freq_band)).to(features) * (db_range[1] - db_range[0]) + db_range[0]
band_factors = 10 ** (band_factors / 20)
freq_filt = torch.ones((batch_size, n_freq_bin, 1)).to(features)
for i in range(n_freq_band):
freq_filt[:, band_bndry_freqs[i]:band_bndry_freqs[i+1], :] = band_factors[:, i].unsqueeze(-1).unsqueeze(-1)
return features * freq_filt
else:
return features
def frame_shift(features, label=None, net_pooling=None):
if label is not None:
batch_size, _, _ = features.shape
shifted_feature = []
shifted_label = []
for idx in range(batch_size):
shift = int(random.gauss(0, 90))
shifted_feature.append(torch.roll(features[idx], shift, dims=-1))
shift = -abs(shift) // net_pooling if shift < 0 else shift // net_pooling
shifted_label.append(torch.roll(label[idx], shift, dims=-1))
return torch.stack(shifted_feature), torch.stack(shifted_label)
else:
batch_size, _, _ = features.shape
shifted_feature = []
for idx in range(batch_size):
shift = int(random.gauss(0, 90))
shifted_feature.append(torch.roll(features[idx], shift, dims=-1))
return torch.stack(shifted_feature)
def mixup(features, label=None, permutation=None, c=None, alpha=0.2, beta=0.2, mixup_label_type="soft", returnc=False):
with torch.no_grad():
batch_size = features.size(0)
if permutation is None:
permutation = torch.randperm(batch_size)
if c is None:
if mixup_label_type == "soft":
c = np.random.beta(alpha, beta)
elif mixup_label_type == "hard":
c = np.random.beta(alpha, beta) * 0.4 + 0.3 # c in [0.3, 0.7]
mixed_features = c * features + (1 - c) * features[permutation, :]
if label is not None:
if mixup_label_type == "soft":
mixed_label = torch.clamp(c * label + (1 - c) * label[permutation, :], min=0, max=1)
elif mixup_label_type == "hard":
mixed_label = torch.clamp(label + label[permutation, :], min=0, max=1)
else:
raise NotImplementedError(f"mixup_label_type: {mixup_label_type} not implemented. choice in "
f"{'soft', 'hard'}")
if returnc:
return mixed_features, mixed_label, c, permutation
else:
return mixed_features, mixed_label
else:
return mixed_features
def time_mask(features, labels=None, net_pooling=None, mask_ratios=(10, 20)):
if labels is not None:
_, _, n_frame = labels.shape
t_width = torch.randint(low=int(n_frame/mask_ratios[1]), high=int(n_frame/mask_ratios[0]), size=(1,)) # [low, high)
t_low = torch.randint(low=0, high=n_frame-t_width[0], size=(1,))
features[:, :, t_low * net_pooling:(t_low+t_width)*net_pooling] = 0
labels[:, :, t_low:t_low+t_width] = 0
return features, labels
else:
_, _, n_frame = features.shape
t_width = torch.randint(low=int(n_frame/mask_ratios[1]), high=int(n_frame/mask_ratios[0]), size=(1,)) # [low, high)
t_low = torch.randint(low=0, high=n_frame-t_width[0], size=(1,))
features[:, :, t_low:(t_low + t_width)] = 0
return features
def feature_transformation(features, n_transform, choice, filtaug_choice, filter_db_range, filter_bands,
filter_minimum_bandwidth, filter_type, freq_mask_ratio, noise_snrs):
if n_transform == 2:
feature_list = []
for _ in range(n_transform):
features_temp = features
if choice[0]:
if filtaug_choice == "prototype":
features_temp = filt_aug_prototype(features_temp, db_range=filter_db_range, n_bands=filter_bands)
elif filtaug_choice == "updated":
features_temp = filt_aug(features_temp, db_range=filter_db_range, n_band=filter_bands,
min_bw=filter_minimum_bandwidth, filter_type=filter_type)
if choice[1]:
features_temp = freq_mask(features_temp, mask_ratio=freq_mask_ratio)
if choice[2]:
features_temp = add_noise(features_temp, snrs=noise_snrs)
feature_list.append(features_temp)
return feature_list
elif n_transform == 1:
if choice[0]:
if filtaug_choice == "prototype":
features = filt_aug_prototype(features, db_range=filter_db_range, n_bands=filter_bands)
elif filtaug_choice == "updated":
features = filt_aug(features, db_range=filter_db_range, n_band=filter_bands,
min_bw=filter_minimum_bandwidth, filter_type=filter_type)
if choice[1]:
features = freq_mask(features, mask_ratio=freq_mask_ratio)
if choice[2]:
features = add_noise(features, snrs=noise_snrs)
return [features, features]
else:
return [features, features]
def freq_mask(features, mask_ratio=16):
batch_size, n_freq_bin, _ = features.shape
max_mask = int(n_freq_bin/mask_ratio)
if max_mask == 1:
f_widths = torch.ones(batch_size)
else:
f_widths = torch.randint(low=1, high=max_mask, size=(batch_size,)) # [low, high)
for i in range(batch_size):
f_width = f_widths[i]
f_low = torch.randint(low=0, high=n_freq_bin-f_width, size=(1,))
features[i, f_low:f_low+f_width, :] = 0
return features
def add_noise(features, snrs=(15, 30), dims=(1, 2)):
if isinstance(snrs, (list, tuple)):
snr = (snrs[0] - snrs[1]) * torch.rand((features.shape[0],), device=features.device).reshape(-1, 1, 1) + snrs[1]
else:
snr = snrs
snr = 10 ** (snr / 20)
sigma = torch.std(features, dim=dims, keepdim=True) / snr
return features + torch.randn(features.shape, device=features.device) * sigma