-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanonymize.py
66 lines (46 loc) · 2.36 KB
/
anonymize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from src.utils.utils import seed_everything, get_anonymizer_ds_flag
from src.utils.data import get_databases
from src.anonymizer.cvae import CVAEAnonymizer
from src.anonymizer.ksame import kSAME
from argparse import ArgumentParser
import numpy as np
import time
import torch
import os
def main(args):
seed_everything(args.seed)
g = torch.Generator()
g.manual_seed(args.seed)
# LOAD TENSORS & PREPROCESSING
x_train, y_train, x_val, y_val, _, _ = get_databases(args, anonymized=False)
# EXECUTE
print(f"Starting anonymization of `{args.dataset}` with `{args.anonymizer}`")
start = time.time()
if args.anonymizer == "cvae":
anonymizer = CVAEAnonymizer(args, g)
x_train_anonymized, y_train = anonymizer.apply(x_train, y_train, x_val, y_val)
elif args.anonymizer == "ksame":
assert args.k, f"You need to set a proper value of `k`, you have {args.k}"
anonymizer = kSAME(k=args.k, device=args.device)
x_train_anonymized, y_train = anonymizer.apply(x_train, y_train)
print(f"\tElapsed time = {(time.time() - start):.2f}s")
# STORE ANONYMIZED DBs >> database_root / dataset / train_[anonymizer].npz
train_data = {'embeddings': x_train_anonymized, 'labels': y_train}
output_path = os.path.join(args.database_root,args.dataset,f'train_{get_anonymizer_ds_flag(args)}.npz')
np.savez_compressed(output_path, **train_data)
if __name__ == '__main__':
parser = ArgumentParser()
# GENERAL
parser.add_argument('--database_root', type=str, default="assets/database", help='define the database root')
parser.add_argument('--ckpt_root', type=str, default='assets/ckpts/', help='define the checkpoint root')
# DATASET & HYPERPARAMS
parser.add_argument('--dataset', type=str, required=True, help='define the dataset name')
parser.add_argument('--batch_size', type=int, default=128, help='define the batch size')
parser.add_argument('--seed', type=int, default=42, help='define the random seed')
parser.add_argument('--device', type=str, default='cuda:0', help='define the running device')
# ANONYMIZATION
parser.add_argument('--anonymizer', type=str, default='ksame', help='define the anonymizer', choices=['ksame','cvae'])
parser.add_argument('--k', type=int, default=None, help='define the k value used for k-SAME')
args = parser.parse_args()
# run
main(args)