-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathModel.py
90 lines (71 loc) · 2.98 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
class GraphConvolution(nn.Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
paper: Semi-Supervised Classification with Graph Convolutional Networks
"""
# 模型的参数包括weight和bias
def __init__(self, in_features, out_features):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
self.bias = Parameter(torch.FloatTensor(out_features))
self.reset_parameters()
# 权重初始化
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
self.bias.data.uniform_(-stdv, stdv)
# 类似于tostring
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
# 计算A~ X W(0)
def forward(self, input, adj):
# input.shape = [max_node, features] = X
# adj.shape = [max_node, max_node] = A~
# torch.mm(a, b)是矩阵a和b矩阵相乘,torch.mul(a, b)是矩阵a和b对应位相乘,a和b的维度必须相等
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
return output + self.bias
class GCN(nn.Module):
# feature的个数;最终的分类数
def __init__(self, nfeat, nclass, dropout):
""" As per paper """
""" 3 layers of GCNs with output dimensions equal to 32, 48, 64 respectively and average all node features """
""" Final classifier with 2 fully connected layers and hidden dimension set to 32 """
""" Activation function - ReLu (Mutag) """
super(GCN, self).__init__()
self.dropout = dropout
self.gc1 = GraphConvolution(nfeat, 32)
self.gc2 = GraphConvolution(32, 48)
self.gc3 = GraphConvolution(48, 64)
self.fc1 = nn.Linear(64, 32)
self.fc2 = nn.Linear(32, nclass)
def forward(self, x, adj):
# x.shape = [max_node, features]
# adj.shape = [max_node, max_node]
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.gc2(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.gc3(x, adj))
y = torch.mean(x, 0) # 采用mean作为聚合函数聚合所有结点的特征
y = F.relu(self.fc1(y))
y = F.dropout(y, self.dropout, training=self.training)
y = F.softmax(self.fc2(y), dim=0)
return y
if __name__ == '__main__':
input = torch.rand(29, 7)
adj = torch.rand(29, 29)
model = GCN(nfeat=7, # nfeat = 7
nclass=2, # nclass = 7
dropout=0.1)
output = model(input, adj)
print(output.size())