-
Notifications
You must be signed in to change notification settings - Fork 325
/
FlappyBirdDQN.py
45 lines (39 loc) · 1.33 KB
/
FlappyBirdDQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# -------------------------
# Project: Deep Q-Learning on Flappy Bird
# Author: Flood Sung
# Date: 2016.3.21
# -------------------------
import cv2
import sys
sys.path.append("game/")
import wrapped_flappy_bird as game
from BrainDQN_Nature import BrainDQN
import numpy as np
# preprocess raw image to 80*80 gray image
def preprocess(observation):
observation = cv2.cvtColor(cv2.resize(observation, (80, 80)), cv2.COLOR_BGR2GRAY)
ret, observation = cv2.threshold(observation,1,255,cv2.THRESH_BINARY)
return np.reshape(observation,(80,80,1))
def playFlappyBird():
# Step 1: init BrainDQN
actions = 2
brain = BrainDQN(actions)
# Step 2: init Flappy Bird Game
flappyBird = game.GameState()
# Step 3: play game
# Step 3.1: obtain init state
action0 = np.array([1,0]) # do nothing
observation0, reward0, terminal = flappyBird.frame_step(action0)
observation0 = cv2.cvtColor(cv2.resize(observation0, (80, 80)), cv2.COLOR_BGR2GRAY)
ret, observation0 = cv2.threshold(observation0,1,255,cv2.THRESH_BINARY)
brain.setInitState(observation0)
# Step 3.2: run the game
while 1!= 0:
action = brain.getAction()
nextObservation,reward,terminal = flappyBird.frame_step(action)
nextObservation = preprocess(nextObservation)
brain.setPerception(nextObservation,action,reward,terminal)
def main():
playFlappyBird()
if __name__ == '__main__':
main()