forked from yugabyte/yb-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathysql_table_row_count.py
executable file
·132 lines (109 loc) · 4.98 KB
/
ysql_table_row_count.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python3
# pip install psycopg2
import threading
import time
import random
import os
from functools import partial
import argparse
import psycopg2
from multiprocessing.dummy import Pool as ThreadPool
threads = []
def check_partition_row_count(schema_name, table_name, p_columns, cursors, l_bound):
tid = threading.current_thread().ident
if tid not in threads:
threads.append(tid)
index = threads.index(tid)
stmt = ("SELECT count(*) as rows FROM {} " +
"WHERE yb_hash_code({}) >= %s " +
"AND yb_hash_code({}) <= %s").format(
table_name,
p_columns,
p_columns)
range_size = int((64*1024)/num_tasks_per_table)
u_bound = l_bound + range_size - 1
cursor = cursors[index]
results = cursor.execute(stmt, (int(l_bound), int(u_bound)))
assert(cursor.rowcount == 1)
row_cnt = cursor.fetchall()[0][0]
return row_cnt
def check_table_row_counts(schema_name, table_name):
print("Checking row counts for: " + schema_name + "." + table_name);
results = session.execute("SELECT a.attname " +
"FROM pg_index i " +
"JOIN pg_attribute a ON a.attrelid = i.indrelid " +
"AND a.attnum = ANY(i.indkey) " +
"WHERE i.indrelid = %s::regclass " +
"AND i.indisprimary AND (i.indoption[array_position(i.indkey, a.attnum)] & 4 <> 0);",
(table_name,))
# Add the partition columns to an array sorted by the
# position of the column in the primary key.
partition_columns = [''] * 256
num_partition_columns = 0
results = session.fetchall()
if len(results) == 0:
return
for row in results:
partition_columns[num_partition_columns] = row[0]
num_partition_columns = num_partition_columns + 1
del partition_columns[num_partition_columns:] # remove extra null elements from array
p_columns = ",".join(partition_columns)
print("Partition columns for " + schema_name + "." + table_name + ": (" + p_columns + ")");
print("Performing {} checks for {}.{}".format(num_tasks_per_table, schema_name, table_name))
range_size = int((64*1024)/num_tasks_per_table)
l_bounds = []
for idx in range(num_tasks_per_table):
l_bound = int(idx * range_size)
l_bounds.append(l_bound)
pool = ThreadPool(num_parallel_tasks)
cursors = []
indices = []
for i in range(num_parallel_tasks):
t_cluster = psycopg2.connect("host={} port={} dbname={} user={} password={}".format(args.cluster, args.portname, args.dbname, args.username, args.password))
indices.append(i)
cursors.append(t_cluster.cursor())
t1 = time.time()
row_counts = pool.map(partial(check_partition_row_count,
schema_name,
table_name,
p_columns, cursors),
l_bounds)
t2 = time.time()
print("====================")
print("Total Time: %s ms" % ((t2 - t1) * 1000))
print("====================")
# cleanup
for i in range(num_parallel_tasks):
cursors[i].close()
total_row_cnt = 0
del threads[:]
for idx in range(len(row_counts)):
total_row_cnt = total_row_cnt + row_counts[idx]
print("Total Row Count for {}.{} = {}".format(schema_name, table_name, total_row_cnt))
print("--------------------------------------------------------")
def check_schema_table_row_counts(schema_name):
print("Checking table row counts for schema: " + schema_name + " in database: " + dbname);
print("--------------------------------------------------------")
tables = []
results = session.execute("select tablename from pg_tables where schemaname = %s", (schema_name,
));
for row in session.fetchall():
check_table_row_counts(schema_name, row[0])
parser = argparse.ArgumentParser(description='get row counts of a table using parallel driver')
# Main
parser.add_argument('--cluster', help="ip or hostname of cluster", default='127.0.0.1')
parser.add_argument('--portname', help="portname of cluster", default='5433')
parser.add_argument('--username', help="username of cluster", default='yugabyte')
parser.add_argument('--password', help="password of cluster", default='yugabyte')
parser.add_argument('--dbname', help="name of database to count", default='yugabyte')
parser.add_argument('--schemaname', help="schema to count on", default='public')
parser.add_argument('--tasks', help="number of tasks per table", default=4096)
parser.add_argument('--parallel', help="number of parallel tasks", default=8)
args = parser.parse_args()
cluster = psycopg2.connect("host={} port={} dbname={} user={} password={}".format(args.cluster, args.portname, args.dbname, args.username, args.password))
dbname = args.dbname
num_tasks_per_table = int(args.tasks)
num_parallel_tasks = int(args.parallel)
schema_name = args.schemaname
session = cluster.cursor()
check_schema_table_row_counts(schema_name)