-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path6) ProPerlyAsked clusterAnalysis.Rmd
421 lines (348 loc) · 13.1 KB
/
6) ProPerlyAsked clusterAnalysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# ProPer clusterAnalysis (VI): find clusters based on sequences of ProPer metrics
```{r clean_start}
rm(list = ls())
## Load required libraries
require(data.table) # wide format
require(dplyr) # distance matrices
require(scales) # rescale and combine distmats
require(ggplot2) # line plot
#### LOAD DATA ####
read.csv("data_tables/nano_scores_df.csv") -> df
read.csv("data_tables/mini_scores_df.csv")$intervalDuration_rel -> df$intervalDuration_rel
read.csv("data_tables/mini_scores_df.csv")$localSpeechRate -> df$localSpeechRate
# read.csv("data_tables/mini_scores_df.csv") -> mini_df
```
## Cluster analysis procedure
```{r preparation, warning=FALSE}
# check counts (for checking)
as.data.frame(table(df$file)) -> counts
# remove cases without measures
df[is.na(df$DeltaF0_rel)==F,] -> df
df[is.na(df$sync_rel)==F,] -> df
df[is.na(df$mass_rel)==F,] -> df
df[is.na(df$intervalDuration_rel)==F,] -> df
df[is.na(df$localSpeechRate)==F,] -> df
# remove cases without syll label
df[is.na(df$syll_label)==F,] -> df
# remove cases with less than 6 syllables
0 -> df$rm
for (f in unique(df$file)){
if (nrow(df[df$file==f,])<6){
1 -> df$rm[df$file==f]
}
if (length(unique(df$syll_label[df$file==f]))<6){
1 -> df$rm[df$file==f]
}
}
df[df$rm==0,] -> df
# number syllables
df$syll_label -> df$syll_nr
ifelse(df$syll_label=="can"|df$syll_label=="could"|df$syll_label=="may",1,df$syll_nr) -> df$syll_nr
ifelse(df$syll_label=="I",2,df$syll_nr) -> df$syll_nr
ifelse(df$syll_label=="ask",3,df$syll_nr) -> df$syll_nr
ifelse(df$syll_label=="you a",4,df$syll_nr) -> df$syll_nr
ifelse(df$syll_label=="ques-",5,df$syll_nr) -> df$syll_nr
ifelse(df$syll_label=="tion",6,df$syll_nr) -> df$syll_nr
table(df$syll_label)
# wide format
dcast(setDT(df), file ~ syll_nr, value.var = c("DeltaF0_rel","sync_rel","mass_rel","intervalDuration_rel","localSpeechRate")) -> df
# "intervalDuration_rel","localSpeechRate"
# distance matrices
dist(df %>%
select(grep("Delta", colnames(df)))
) -> dist_delta
dist(df %>%
select(grep("sync", colnames(df)))
) -> dist_sync
dist(df %>%
select(grep("mass", colnames(df)))
) -> dist_mass
dist(df %>%
select(grep("intervalDuration", colnames(df)))
) -> dist_duration
dist(df %>%
select(grep("localSpeechRate", colnames(df)))
) -> dist_speechRate
# rescale and combine distmats
rescale(dist_delta,c(0,1)) -> dist_delta
rescale(dist_sync,c(0,1)) -> dist_sync
rescale(dist_mass,c(0,1)) -> dist_mass
rescale(dist_duration,c(0,1)) -> dist_duration
rescale(dist_speechRate,c(0,1)) -> dist_speechRate
```
## MAKE TWO CHOICES:
1. which metric to consider, DeltaF0 and/or Synchrony?
Use T to include and F to exclude (both can be T but not F)
2. how many clusters?
Set 'k' to numbers between 2 and 12
```{r paramaterSetting, warning=FALSE}
# 1. which (combination of) measure(s)?
# delta_f0 = T
# synchrony = T
# mass = T
# intervalDuration = T
# speechRate = T
# 2. which number of clusters?
k = 12
```
## Run the analysis
```{r justDoIt, warning=FALSE}
# get the (combined) distance matrix
# dist_delta -> dist
#
# dist_sync -> dist
#
# dist_delta + dist_sync -> dist
dist_delta + dist_sync + dist_mass -> dist
# if (delta_f0 == T & synchrony == T){
# dist_delta + dist_sync -> dist
# }
#
# if (delta_f0 == T & synchrony == F){
# dist_delta -> dist
# }
#
# if (delta_f0 == F & synchrony == T){
# dist_sync -> dist
# }
# clustering
hclust(dist,method = "complete") -> hc
cutree(hc,k) -> df$cluster
```
## produce plots
```{r plot_prepare, warning=FALSE}
melt(df,id.vars = c("file","cluster"),measure.vars = list(c(2:7),c(8:13),c(14:19)),variable.name = "syll_nr",value.name = c("delta","sync","mass")) -> df_plot
# rescale for plotting
df_plot$delta <- rescale(df_plot$delta, c(0,1))
df_plot$sync <- rescale(df_plot$sync, c(0,1))
df_plot$mass <- rescale(df_plot$mass, c(0,1))
rm(panel_text)
rm(wrap_labs)
panel_text <-
data.frame(
label = paste0("n=",
as.character(as.data.frame(table(df$cluster))[, 2])),
cluster = 1:k
)
wrap_labs <- (paste0(panel_text$cluster, " (", panel_text$label, ")"))
attributes(wrap_labs)$names <- panel_text$cluster
```
```{r plot_new, warning=FALSE}
clusterPlot <-
ggplot(df_plot, aes(x = syll_nr)) +
geom_jitter(aes(y=delta), color="green", alpha = 0.25) +
geom_jitter(aes(y=sync), color="blue", alpha = 0.25) +
geom_jitter(aes(y=mass), color="red", alpha = 0.25) +
geom_violin(aes(y=delta), color="green", alpha = 0.35) +
geom_violin(aes(y=sync), color="blue", alpha = 0.35) +
geom_violin(aes(y=mass), color="red", alpha = 0.35) +
facet_wrap(~ cluster, labeller = as_labeller(wrap_labs)) +
scale_x_discrete(name ="Syllable", labels=c("can","I","ask","you a","ques-","tion")) +
theme(panel.background = element_blank(), axis.title.y = element_blank(), axis.ticks.y = element_blank(), axis.text.y = element_blank(), axis.text.x = element_text(size = 7), axis.title.x = element_text(size=10))
print(clusterPlot)
#--save?
ggsave(clusterPlot,file=paste0("plots/",k,"_clusters.pdf"),device=cairo_pdf)
```
---
# /////////////// OLD plots /////////////////
# ```{r plot2--old, warning=FALSE}
#
#
# clrs <- c("Delta f0"="red", "Synchrony"="blue", "Mass"="green")
# rescale(x = df_plot$sync, to = c(min(df_plot$delta), max(df_plot$delta))) -> df_plot$sync_resc
# a.diff <- max(df_plot$delta) - min(df_plot$delta)
# b.diff <- max(df_plot$sync) - min(df_plot$sync)
# a.min <- min(df_plot$delta)
# b.min <- min(df_plot$sync)
#
# rm(panel_text)
# rm(wrap_labs)
# panel_text <-
# data.frame(label = paste0("n=", as.character(as.data.frame(
# table(df$cluster)
# )[, 2])),
# cluster = 1:k)
# wrap_labs <- (paste0(panel_text$cluster, " (", panel_text$label, ")"))
# attributes(wrap_labs)$names <- panel_text$cluster
#
# cues=2
#
# ggplot(df_plot, aes(x = syll_nr)) +
# scale_colour_manual(name="Measure:", values=clrs) +
# scale_y_continuous(
# name = names(clrs[1]),
# sec.axis = sec_axis(~((. -a.min) * b.diff / a.diff) + b.min, name=names(clrs[2]))
# ) +
# theme(legend.position="bottom") +
# facet_wrap(~ cluster,nrow=2,labeller = as_labeller(wrap_labs)) +
# ylab("") +
# scale_x_discrete(name ="Syllable", labels=c("Can","I","ask","you a","ques-","tion"))+
# theme(plot.title = element_blank(), plot.background = element_rect(fill = "white"), panel.grid.major.x = element_line(), panel.grid.major.y = element_blank(), axis.title.x = element_blank(), axis.title.y = element_text(size = 12), axis.text.x = element_text(size = 9), axis.text.y = element_text(size = 9), strip.text = element_text(size = 12)) -> p
#
# if (synchrony == T){
# p +
# stat_summary(
# mapping = aes(y =sync_resc, colour = "Synchrony"),
# fun = mean,
# group = "cluster",
# geom = "line",
# linewidth = 1,
# show.legend = T
# ) -> p}
#
# if (delta_f0 == T){
# p +
# stat_summary(
# mapping = aes(y =delta, colour = "Delta f0"),
# fun = mean,
# group = "cluster",
# geom = "line",
# linewidth = 1,
# show.legend = T
# ) -> p}
#
# p
# ggsave(p, file=paste0("plots/ClusterLinePlot_",k,"Clusters.pdf"),device=cairo_pdf)
#
# # violin plot
# ggplot(df_plot, aes(x = syll_nr)) +
# scale_colour_manual(name="Measure:", values=clrs) +
# scale_y_continuous(
# name = names(clrs[1]),
# sec.axis = sec_axis(~((. -a.min) * b.diff / a.diff) + b.min, name=names(clrs[2]))
# ) +
# theme(legend.position="bottom") +
# facet_wrap(~ cluster,nrow=2,labeller = as_labeller(wrap_labs)) +
# ylab("") +
# scale_x_discrete(name ="Syllable", labels=c("Can","I","ask","you a","ques-","tion"))+
# theme(plot.title = element_blank(), plot.background = element_rect(fill = "white"), panel.grid.major.x = element_line(), panel.grid.major.y = element_blank(), axis.title.x = element_blank(), axis.title.y = element_text(size = 12), axis.text.x = element_text(size = 9), axis.text.y = element_text(size = 9), strip.text = element_text(size = 12)) -> vp
#
# if (delta_f0 ==T){
# vp + geom_violin(
# mapping = aes(y =delta, colour = "Delta f0"),
# fill = "transparent"
# ) -> vp}
#
# if(synchrony ==T){
# vp + geom_violin(
# mapping = aes(y =sync_resc, colour = "Synchrony"),
# fill = "transparent"
# ) -> vp}
#
# vp
# ggsave(vp, file=paste0("plots/ClusterViolinPlot_",k,"Clusters.pdf"),device=cairo_pdf)
#
# ```
# /////////////// OLD plots /////////////////
---
## Select prototypes per cluster
```{r prototypes, warning=FALSE}
# get prototypes per cluster based on the minimum deviation from the cluster mean (iterated over all syllables)
0 -> df$devDlt
0 -> df$devSnc
0 -> df$devMass
for (r in 1:nrow(df)){
mean(unlist(abs(df[r,2:7]-colMeans(df[,2:7][df$cluster==df$cluster[r]])))) -> df$devDlt[r]
mean(unlist(abs(df[r,8:13]-colMeans(df[,8:13][df$cluster==df$cluster[r]])))) -> df$devSnc[r]
mean(unlist(abs(df[r,8:13]-colMeans(df[,14:19][df$cluster==df$cluster[r]])))) -> df$devMass[r]
}
rescale(df$devDlt,c(0,1)) -> df$devDlt
rescale(df$devSnc,c(0,1)) -> df$devSnc
rescale(df$devMass,c(0,1)) -> df$devMass
for (c in 1:max(df$cluster)){
print(paste0(c,": ",df$file[df$cluster==c][which.min(df$devDlt[df$cluster==c]+df$devSnc[df$cluster==c]+df$devMass[df$cluster==c])]))
}
```
## OLD clusters based on sync+delta
k = 3
[1] "1: cut-KGO_20210126_230000_ABC7_News_Getting_Answers"
[1] "2: cut-KNTV_20180321_063400_The_Tonight_Show_Starring_Jimmy_Fallon"
[1] "3: cut-KGO_20210610_063500_Jimmy_Kimmel_Live"
k = 6
[1] "1: cut-KGO_20210126_230000_ABC7_News_Getting_Answers"
[1] "2: cut-KNTV_20180321_063400_The_Tonight_Show_Starring_Jimmy_Fallon"
[1] "3: cut-BETW_20170322_070700_The_Daily_Show"
[1] "4: cut-FOXNEWSW_20180220_170000_Outnumbered"
[1] "5: cut-CNBC_20120202_190000_Street_Signs"
[1] "6: cut-CSPAN_20170221_140000_Washington_Journal_News_Headlines_and_Viewer_Calls"
k = 8
[1] "1: cut-KGO_20210126_230000_ABC7_News_Getting_Answers"
[1] "2: cut-KGO_20200318_230000_ABC7_News_400PM"
[1] "3: cut-ALJAZ_20210315_113000_Inside_Story"
[1] "4: cut-CSPAN3_20181015_230600_Discussion_on_the_Opioid_Epidemic_at_Women_for_Trump_Event"
[1] "5: cut-FOXNEWSW_20180220_170000_Outnumbered"
[1] "6: cut-CNBC_20120202_190000_Street_Signs"
[1] "7: cut-CSPAN_20170221_140000_Washington_Journal_News_Headlines_and_Viewer_Calls"
[1] "8: cut-CSPAN3_20210213_005900_American_Artifacts_Jim_Crow_Museum_of_Racist_Memorabilia"
# Write clusterAnalysis table
```{r write_clusterAnalysis_df}
## Write the scores data file
clusterAnalysis_df <- droplevels(subset(df, select = c(file, cluster)))
write.csv(clusterAnalysis_df, "data_tables/clusterAnalysis_df.csv", row.names=FALSE)
```
## Evaluate the optimal number of clusters
```{r evaluation, warning=FALSE}
#### eval w/b ####
# evaluate clustering quality for rounds from 2 to 15 clusters using variance within and between clusters
# within cluster variance expected to be lower with more clusters (better compactness)
# between cluster variance expected to be higher with more clusters (better separation)
# optimum lies where w-var and b-var are the furthest apart for the lowest number of clusters
c() -> df.var
wDlt <- c()
wSnc <- c()
wMass <- c()
bDlt <- c()
bSnc <- c()
bMass <- c()
for (r in 2:15){
cutree(hc,k = r) -> df$cluster
wcDlt <- c()
wcSnc <- c()
wcMass <- c()
for (c in 1:r){
c() -> colsd_wDlt
for (m in 2:7) {
append(colsd_wDlt,sd(unlist(df[df$cluster == c,m,with=FALSE]))) -> colsd_wDlt
}
append(wcDlt, mean(colsd_wDlt,na.rm = T)) -> wcDlt
c() -> colsd_wSnc
for (m in 8:13) {
append(colsd_wSnc,sd(unlist(df[df$cluster == c,m,with=FALSE]))) -> colsd_wSnc
}
append(wcSnc, mean(colsd_wSnc,na.rm = T)) -> wcSnc
c() -> colsd_wMass
for (m in 14:19) {
append(colsd_wMass,sd(unlist(df[df$cluster == c,m,with=FALSE]))) -> colsd_wMass
}
append(wcMass, mean(colsd_wMass,na.rm = T)) -> wcMass
}
append(wDlt,mean(c(wcDlt,wcDlt),na.rm = T)) -> wDlt
append(wSnc,mean(c(wcSnc,wcSnc),na.rm = T)) -> wSnc
append(wMass,mean(c(wcMass,wcMass),na.rm = T)) -> wMass
append(bDlt,abs(max(wcDlt,na.rm = T))-abs(min(wcDlt,na.rm = T))) -> bDlt
append(bSnc,abs(max(wcSnc,na.rm = T))-abs(min(wcSnc,na.rm = T))) -> bSnc
append(bMass,abs(max(wcMass,na.rm = T))-abs(min(wcMass,na.rm = T))) -> bMass
}
as.data.frame(cbind(2:15,wDlt,wSnc,wMass,bDlt,bSnc,bMass)) -> df.var
# rescale
rescale(df.var$wDlt,c(0,1)) -> df.var$wDlt
rescale(df.var$wSnc,c(0,1)) -> df.var$wSnc
rescale(df.var$wMass,c(0,1)) -> df.var$wMass
rescale(df.var$bDlt,c(0,1)) -> df.var$bDlt
rescale(df.var$bSnc,c(0,1)) -> df.var$bSnc
rescale(df.var$bMass,c(0,1)) -> df.var$bMass
eval <- ggplot(df.var, aes(x=V1)) +
geom_line(aes(y=wDlt),colour="green") +
geom_line(aes(y=wSnc),colour="blue") +
geom_line(aes(y=wMass),colour="red") +
geom_line(aes(y=bDlt),colour="green", linetype=2) +
geom_line(aes(y=bSnc),colour="blue", linetype=2) +
geom_line(aes(y=bMass),colour="red", linetype=2) +
annotate("text",13,0.5,label = paste0("--- between var","\n","\U2015 within var")) +
ylab("scaled variance") +
xlab("N clusters") +
# theme_classic(base_size = 20)
theme(plot.title = element_blank(), axis.title = element_text(size = 10), axis.text.x = element_text(size = 9), axis.text.y = element_text(size = 10), strip.text = element_text(size = 8))
print(eval)
ggsave(eval, file=paste0("plots/EvaluationClusterPlot.pdf"),device=cairo_pdf)
```