-
Notifications
You must be signed in to change notification settings - Fork 23
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
question about training CIFAR10 #19
Comments
@namedBen 分析如下:
|
首先谢谢您的回复,对于第一点,我也是这么实现的,对于第二点,目前我是用VGG7训练CIFAR10,但是根据您论文所提供的训练策略训练full percision weight networks时,取initial learning rate=0.1,optimizer=SGD,训练是loss爆炸的(epoch1就产生)。请问您具体是如何实现FPWNs达到92.88的? |
您可以把主要训练参数和log信息贴一下吗? |
网络模型定义如下:
|
这是用pytorch框架实现的吗?跟原始caffe的repo有几点差别:
|
嗯嗯,用的是pytorch |
您好,当我在用论文提供的网络结构以及初始学习率训练cifar10的时候,发现无法训练,Loss爆炸了直接nan。您的VGG7参考网络结构为“2×(128-C3) + MP2 +2×(256-C3) + MP2 + 2×(512-C3) + MP2 + 1024-FC + Softmax。想请教您两个问题:
1.在1024-FC层之前,特征图的大小为batch * 512 * 4 * 4,请问这个1024FC是如何做到把8192变成10的维度的?
2.其次,按照BPWNs的网络结构 2×1024F C)−10SVM,以您参考的base_lr=0.1训练的loss是nan,请问这是什么原因?
蟹蟹
The text was updated successfully, but these errors were encountered: