-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsolver.py
340 lines (284 loc) · 13.1 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
from loguru import logger
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
from os.path import exists, join
from os import makedirs
from dataloader import TimitLoader, YohoLoader, spect_loader
from convert_ceps import convert
from model import Encoder, CarrierDecoder, MsgDecoder, Discriminator
from tqdm import tqdm, trange
from hparams import *
from stft.stft import STFT
import os
from os.path import join, basename
from collections import defaultdict
from experiment import Experiment
class Solver(object):
def __init__(self, config):
self.config = config
# optimization hyperparams
self.lr = config.lr
self.lambda_carrier_loss = config.lambda_carrier_loss
self.lambda_msg_loss = config.lambda_msg_loss
# training config
self.num_iters = config.num_iters
self.cur_iter = 0
self.loss_type = config.loss_type
self.train_path = config.train_path
self.val_path = config.val_path
self.test_path = config.test_path
self.batch_size = config.batch_size
self.n_pairs = config.n_pairs
self.n_messages = config.n_messages
self.model_type = config.model_type
self.dataset= config.dataset
self.trim_start = {'yoho': int(2.0*8000),
'timit': int(0.6*16000)}[self.dataset]
if config.mode == 'sample':
self.trim_start = 0
self.num_samples = int({'yoho': AUDIO_LEN * 8000,
'timit': AUDIO_LEN * 16000}[self.dataset])
self.carrier_detach = config.carrier_detach
self.add_stft_noise = config.add_stft_noise
self.add_carrier_noise = config.add_carrier_noise
self.carrier_noise_norm = config.carrier_noise_norm
self.adv = config.adv
self.block_type = config.block_type
self.opt_type = {'adam': torch.optim.Adam,
'sgd': torch.optim.SGD,
'rms': torch.optim.RMSprop}[config.opt]
# model dimensions
self.enc_conv_dim = 16
self.enc_num_repeat = 3
self.dec_c_conv_dim = self.enc_conv_dim * (2 ** self.enc_num_repeat)
self.dec_c_num_repeat = self.enc_num_repeat
self.dec_m_conv_dim = 1
self.dec_m_num_repeat = 8
# create experiment
self.experiment = Experiment(config.run_dir, use_comet=False, use_wandb=False)
self.run_dir = self.experiment.dir
self.ckpt_dir = self.experiment.ckpt_dir
self.code_dir = self.experiment.code_dir
self.load_ckpt_dir = config.load_ckpt
self.samples_dir = join(self.run_dir, 'samples')
self.experiment.save_hparams(config)
self.num_workers = config.num_workers
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.save_model_every = config.save_model_every
self.sample_every = config.sample_every
self.print_every = 10
self.mode = 'test'
self.create_dirs()
self.load_data()
self.build_models()
torch.manual_seed(10)
self.stft = STFT(N_FFT, HOP_LENGTH)
self.stft.num_samples = self.num_samples
torch.autograd.set_detect_anomaly(True)
# logging
logger.add(join(self.run_dir, "stdout.log"))
if self.add_stft_noise == -1:
logger.warning("not using stft noise in training!")
def log_losses(self, losses, iteration=None):
if iteration is None:
iteration = self.cur_iter
self.experiment.log_metric(losses, step=iteration)
def create_dirs(self):
makedirs(self.samples_dir, exist_ok=True)
logger.info("created dirs")
def load_data(self):
loader = {'yoho': YohoLoader,
'timit': TimitLoader}[self.dataset]
train = loader(self.train_path,
n_messages=self.n_messages,
n_pairs=self.n_pairs,
trim_start=self.trim_start,
num_samples=self.num_samples)
self.train_loader = DataLoader(train,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers)
val = loader(self.val_path,
n_messages=self.n_messages,
n_pairs=1000,
trim_start=self.trim_start,
num_samples=self.num_samples,
test=True)
self.val_loader = DataLoader(val,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers)
test = loader(self.test_path,
n_messages=self.n_messages,
n_pairs=1000,
trim_start=self.trim_start,
num_samples=self.num_samples,
test=True)
self.test_loader = DataLoader(test,
batch_size=self.batch_size,
shuffle=False,
num_workers=0)
logger.info(f"loaded train ({len(train)}), val ({len(val)}), test ({len(test)})")
def build_models(self):
if self.adv:
self.discriminator = Discriminator()
self.discriminator = nn.DataParallel(self.discriminator)
self.discriminator.to(self.device)
self.discriminator_opt = torch.optim.Adam(self.discriminator.parameters(), lr=0.001)
def save_models(self, suffix=''):
raise NotImplementedError
def load_models(self, ckpt_dir):
raise NotImplementedError
def step(self):
raise NotImplementedError
def reset_grad(self):
raise NotImplementedError
def incur_loss(self, carrier, carrier_reconst, msg, msg_reconst):
raise NotImplementedError
def forward(self, carrier, msg):
raise NotImplementedError
def train_mode(self):
logger.debug("train mode")
self.mode = 'train'
def eval_mode(self):
logger.debug("eval mode")
self.mode = 'test'
def reconstruction_loss(self, input, target, type='mse'):
if type == 'mse':
loss = F.mse_loss(input, target)
elif type == 'abs':
loss = F.l1_loss(input, target)
else:
logger.error("unsupported loss function! reverting to MSE...")
loss = F.mse_loss(input, target)
return loss
def train(self):
self.eval_mode()
# self.sample_examples(subdir=f"epoch_0")
# start of training loop
logger.info("start training...")
epoch_it = trange(self.num_iters)
for epoch in epoch_it:
lr = self.opt.param_groups[0]['lr']
epoch_it.set_description(f"Epoch {epoch}, LR={lr}")
epoch_loss = defaultdict(list)
it = tqdm(self.train_loader)
self.train_mode()
# inner epoch loop
for carrier, carrier_phase, msg in it:
self.cur_iter += 1
i = self.cur_iter
batch_size, _, h, w = carrier.shape
# feedforward and suffer loss
carrier_reconst, msg_reconst = self.forward(carrier, carrier_phase, msg)
loss, losses_log = self.incur_loss(carrier, carrier_reconst, msg, msg_reconst)
if self.adv:
g_target_label_encoded = torch.full((batch_size, 1), 1, device=self.device)
d_on_encoded_for_enc = self.discriminator(carrier_reconst)
g_loss_adv = F.binary_cross_entropy_with_logits(d_on_encoded_for_enc, g_target_label_encoded)
loss += g_loss_adv
self.reset_grad()
loss.backward()
self.step()
if self.adv:
self.discriminator_opt.zero_grad()
d_target_label_cover = torch.full((batch_size, 1), 1, device=self.device)
d_on_cover = self.discriminator(carrier)
d_loss_on_cover = F.binary_cross_entropy_with_logits(d_on_cover, d_target_label_cover)
d_loss_on_cover.backward()
d_target_label_encoded = torch.full((batch_size, 1), 0, device=self.device)
d_on_encoded = self.discriminator(carrier_reconst.detach())
d_loss_on_encoded = F.binary_cross_entropy_with_logits(d_on_encoded, d_target_label_encoded)
d_loss_on_encoded.backward()
self.discriminator_opt.step()
losses_log['d_real'] = d_loss_on_cover.item()
losses_log['d_fake'] = d_loss_on_encoded.item()
losses_log['g_fake'] = g_loss_adv.item()
# log stuff
if i % self.print_every == 0:
log = f"[{i}/{len(self.train_loader)}]"
for loss_name, loss_value in losses_log.items():
log += f", {loss_name}: {loss_value:.4f}"
it.set_description(log)
self.log_losses(losses_log, iteration=self.cur_iter)
# log epoch losses
for k,v in losses_log.items():
epoch_loss[k].append(v)
# calc epoch stats
for k,v in list(epoch_loss.items()):
epoch_loss["epoch_" + k] = np.mean(v)
epoch_loss.pop(k)
epoch_loss['lr'] = lr
self.log_losses(epoch_loss, iteration=epoch)
# put everything in eval mode for sampling
self.eval_mode()
# save model every epoch
self.save_models(suffix=str(epoch+1) + "_epoch")
# sample every epoch
# self.sample_examples(subdir=f"epoch_{epoch+1}")
# run validation and log losses
self.log_losses(self.test(data='val'), iteration=epoch)
logger.info("finished training!")
def snr(self, orig, recon):
N = orig.shape[-1] * orig.shape[-2]
orig, recon = orig.cpu(), recon.cpu()
rms1 = ((torch.sum(orig ** 2) / N) ** 0.5)
rms2 = ((torch.sum((orig - recon) ** 2) / N) ** 0.5)
snr = 10 * torch.log10((rms1 / rms2) ** 2)
return snr
def test(self, data='test'):
self.eval_mode()
with torch.no_grad():
avg_carrier_loss, avg_msg_loss = 0, 0
carrier_snr_list = []
msg_snr_list = []
logger.info(f"phase: {'test' if data == 'test' else 'validation'}")
data = self.test_loader if data == 'test' else self.val_loader
# start of training loop
logger.info("start testing...")
for carrier, carrier_phase, msg, msg_phase in tqdm(data):
# feedforward and incur loss
carrier_reconst, msg_reconst = self.forward(carrier, carrier_phase, msg)
loss, losses_log = self.incur_loss(carrier, carrier_reconst, msg, msg_reconst)
avg_carrier_loss += losses_log['carrier_loss']
avg_msg_loss += losses_log['avg_msg_loss']
# calculate SnR for msg
msg_snr = 0
for m_spect, m_reconst in zip(msg, msg_reconst):
msg_snr += self.snr(m_spect, m_reconst)
msg_snr_list.append(msg_snr / self.n_messages)
# calculate SnR for carrier
carrier_snr = self.snr(carrier, carrier_reconst)
carrier_snr_list.append(carrier_snr)
logger.info("finished testing!")
logger.info(f"carrier loss: {avg_carrier_loss/len(data)}")
logger.info(f"carrier SnR: {np.mean(carrier_snr_list)}")
logger.info(f"message loss: {avg_msg_loss/len(data)}")
logger.info(f"message SnR: {np.mean(msg_snr_list)}")
return {'val epoch carrier loss': avg_carrier_loss/len(data),
'val epoch msg loss': avg_msg_loss/len(data),
'val epoch carrier SnR': np.mean(carrier_snr_list),
'val epoch msg SnR': np.mean(msg_snr_list)}
def sample_examples(self, n_examples=1, subdir=None):
if self.mode != 'test':
logger.warning("generating audio not in test mode!")
examples_dir = self.samples_dir
if subdir is not None:
examples_dir = join(examples_dir, subdir)
makedirs(examples_dir, exist_ok=True)
logger.debug(f"generating {n_examples} examples in '{subdir}'")
for i in range(n_examples):
examples_subdir = join(examples_dir, f'{i}')
makedirs(examples_subdir, exist_ok=True)
carrier_path, msg_path = self.val_loader.dataset.spect_pairs[i]
convert(self,
carrier_path,
msg_path,
trg_dir=examples_subdir,
epoch=i,
trim_start=self.trim_start,
num_samples=self.num_samples)
logger.debug("done")