-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVAE.py
277 lines (198 loc) · 8.99 KB
/
VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
'''
In this file we are going to create our first implementation of a VAE, following
the Kingma and Welling [2014] paper. I cannot be sure it will be an optimized version,
but I will try to do my best.
'''
import math
import torch
import torch.utils
import torch.utils.data
from torch import nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn import init
import numpy as np
## function to compute the standard gaussian N(x;0,I) and a gaussian parametrized by
## mean mu and variance sigma log N(x|µ,σ)
def log_standard_gaussian(x):
"""
Evaluates the log pdf of a standard normal distribution at x. (Univariate distribution)
:param x: point to evaluate
:return: log N(x|0,I)
"""
return torch.sum(-0.5 * math.log(2 * math.pi) - x ** 2 / 2, dim=-1)
def log_gaussian(x, mu, log_var):
"""
Returns the log pdf of a normal distribution parametrised
by mu and log_var evaluated at x. (Univariate distribution)
:param x: point to evaluate
:param mu: mean of distribution
:param log_var: log variance of distribution
:return: log N(x|mu,var)
"""
log_pdf = - 0.5 * math.log(2 * math.pi) - log_var / 2 - (x - mu)**2 / (2 * torch.exp(log_var))
# print('Size log_pdf:', log_pdf.shape)
return torch.sum(log_pdf, dim=-1)
## in a simple explanation a VAE is made up of three different parts:
## - Inference model (or encoder) q_phi(z|x)
## - A stochastic layer that sample (Reparametrization trick)
## - a generative model (or decoder) p_theta(z|x)
## given this, we want to minimize the ELBO
def reparametrization_trick(mu, log_var):
'''
Function that given the mean (mu) and the logarithmic variance (log_var) compute
the latent variables using the reparametrization trick.
z = mu + sigma * noise, where the noise is sample
:param mu: mean of the z_variables
:param log_var: variance of the latent variables
:return: z = mu + sigma * noise
'''
# we should get the std from the log_var
# log_std = 0.5 * log_var (use the logarithm properties)
# std = exp(log_std)
std = torch.exp(log_var * 0.5)
# we have to sample the noise (we do not have to keep the gradient wrt the noise)
eps = Variable(torch.randn_like(std), requires_grad=False)
z = mu.addcmul(std, eps)
return z
## TODO: we can modify the method after to make it able to accept different sample layers
class Encoder(nn.Module):
def __init__(self, input_dim, hidden_dims, latent_dim):
'''
Probabilistic inference network given by a MLP. In case of a Gaussian MLP, we will
have to output: log(sigma^2) and mu.
:param input_dim: dimension of the input (scalar)
:param hidden_dims: dimensions of the hidden layers (vector)
:param latent_dim: dimension of the latent space
'''
super(Encoder, self).__init__()
## now we have to create the architecture
neurons = [input_dim, *hidden_dims]
## common part of the architecture
self.hidden_layers = nn.ModuleList([nn.Linear(neurons[i-1], neurons[i]) for i in range(1,len(neurons))])
## we have two output: mu and log(sigma^2) #TODO: we can create a specific gaussian layer
self.mu = nn.Linear(hidden_dims[-1], latent_dim)
self.log_var = nn.Linear(hidden_dims[-1], latent_dim)
def forward(self, input):
x = input
for layer in self.hidden_layers:
x = F.relu(layer(x))
## now we should compute the mu and log var
_mu = self.mu(x)
# _log_var = F.softplus(self.log_var(x))
_log_var = self.log_var(x)
## now we have also to return our z as the reparametrization trick told us
## z = mu + sigma * noise, where the noise is sample
z = reparametrization_trick(_mu, _log_var)
return z, _mu, _log_var
## now we have to create the Decoder class
class Decoder(nn.Module):
def __init__(self, latent_dim, hidden_dims, input_dim):
'''
:param latent_dim: dimension of the latent space (scalar)
:param hidden_dims: dimensions of the hidden layers (vector)
:param input_dim: dimension of the input (scalar)
'''
super(Decoder, self).__init__()
# this is kind of symmetric to the encoder, it starts from the latent variables z and it
# tries to get the original x back
neurons = [latent_dim, *hidden_dims]
self.hidden_layers = nn.ModuleList([nn.Linear(neurons[i - 1], neurons[i]) for i in range(1, len(neurons))])
self.reconstruction = nn.Linear(hidden_dims[-1], input_dim)
self.output_activation = nn.Sigmoid()
def forward(self, input):
x = input
for layer in self.hidden_layers:
x = F.relu(layer(x))
# print(self.test_set_reconstruction(x).shape)
return self.output_activation(self.reconstruction(x))
## at this point we have both the encoder and decoder, so we can create the VAE
class VariationalAutoencoder(nn.Module):
def __init__(self, input_dim, hidden_dims, latent_dim):
'''
Variational AutoEncoder as described in Kingma and Welling 2014. We have an encoder - decoder
and we want to learn a meaningful latent representation to being able to reconstruct the input
:param input_dim: dimension of the input
:param hidden_dims: dimension of hidden layers #todo: maybe we can differentiate between the encoder and decoder?
:param latent_dim: dimension of the latent variables
'''
super(VariationalAutoencoder, self).__init__()
self.input_dim = input_dim
self.hidden_dims = hidden_dims
self.z_dims = latent_dim
## we should create the encoder and the decoder
self.encoder = Encoder(input_dim, hidden_dims, latent_dim)
self.decoder = Decoder(latent_dim, list(reversed(hidden_dims)), input_dim)
self.kl_divergence = 0
## we should initialize the weights #TODO: INITIALIZE THE WEIGHTS as Kingma paper N(0,0.01)
for m in self.modules():
if isinstance(m, nn.Linear):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
def _kl_divergence(self, z, q_params, p_params = None):
'''
The function compute the KL divergence between the distribution q_phi(z|x) and the prior p_theta(z)
of a sample z.
KL(q_phi(z|x) || p_theta(z)) = -∫ q_phi(z|x) log [ p_theta(z) / q_phi(z|x) ]
= -E[log p_theta(z) - log q_phi(z|x)]
:param z: sample from the distribution q_phi(z|x)
:param q_params: (mu, log_var) of the q_phi(z|x)
:param p_params: (mu, log_var) of the p_theta(z)
:return: the kl divergence KL(q_phi(z|x) || p_theta(z)) computed in z
'''
## we have to compute the pdf of z wrt q_phi(z|x)
(mu, log_var) = q_params
qz = log_gaussian(z, mu, log_var)
# print('size qz:', qz.shape)
## we should do the same with p
if p_params is None:
pz = log_standard_gaussian(z)
else:
(mu, log_var) = p_params
pz = log_gaussian(z, mu, log_var)
# print('size pz:', pz.shape)
kl = qz - pz
return kl
## in case we are using a gaussian prior and a gaussian approximation family
def _analytical_kl_gaussian(self, q_params):
'''
Way for computing the kl in an analytical way. This works for gaussian prior
and gaussian density family for the approximated posterior.
:param q_params: (mu, log_var) of the q_phi(z|x)
:return: the kl value computed analytically
'''
(mu, log_var) = q_params
# print(mu.shape)
# print(log_var.shape)
# prova = (log_var + 1 - mu**2 - log_var.exp())
# print(prova.shape)
# print(torch.sum(prova, 1).shape)
# kl = 0.5 * torch.sum(log_var + 1 - mu**2 - log_var.exp(), 1)
kl = 0.5 * torch.sum(log_var + 1 - mu.pow(2) - log_var.exp(), 1)
return kl
def forward(self, input):
'''
Given an input, we want to run the encoder, compute the kl, and reconstruct it
:param input: an input example
:return: for each pixel it returns the mean of the distribution of the values of that pixel
'''
# we pass the input through the encoder
z, z_mu, z_log_var = self.encoder(input)
# print(z.shape)
# we compute the kl
self.kl_divergence = self._kl_divergence(z, (z_mu, z_log_var))
self.kl_analytical = self._analytical_kl_gaussian((z_mu, z_log_var))
# we reconstruct it
# print(z
x_mu = self.decoder(z)
return x_mu
def sample(self, n_images):
'''
Method to sample from our generative model
:return: a sample starting from z ~ N(0,1)
'''
z = torch.randn((n_images, self.z_dims), dtype = torch.float)
# print(z)
samples = self.decoder(z)
return samples