forked from tech-srl/lstar_extraction
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTeacher.py
36 lines (32 loc) · 1.77 KB
/
Teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from Quantisations import SVMDecisionTreeQuantisation
from WhiteboxRNNCounterexampleGenerator import WhiteboxRNNCounterexampleGenerator
from time import perf_counter
class Teacher:
def __init__(self, network, num_dims_initial_split=10,starting_examples=None):
if None is starting_examples:
starting_examples = []
self.recorded_words = {} # observation table uses this as its T (according to angluin paper terminology)
self.discretiser = SVMDecisionTreeQuantisation(num_dims_initial_split)
self.counterexample_generator = WhiteboxRNNCounterexampleGenerator(network,self.discretiser,starting_examples)
self.dfas = []
self.counterexamples_with_times = []
self.current_ce_count = 0
self.network = network
self.alphabet = network.alphabet #this is more for intuitive use by lstar (it doesn't need to know there's a network involved)
def update_words(self,words):
seen = set(self.recorded_words.keys())
words = set(words) - seen #need this to avoid answering same thing twice, which may happen a lot now with optimistic querying...
self.recorded_words.update({w:self.network.classify_word(w) for w in words})
def classify_word(self, w):
return self.network.classify_word(w)
def equivalence_query(self, dfa):
self.dfas.append(dfa)
start = perf_counter()
counterexample,message = self.counterexample_generator.counterexample(dfa)
counterexample_time = perf_counter() - start
print(message)
print("equivalence checking took: " + str(counterexample_time))
if not None is counterexample:
self.counterexamples_with_times.append((counterexample,counterexample_time))
return counterexample
return None