-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathtraindataviewer.py
68 lines (65 loc) · 2.48 KB
/
traindataviewer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
import cv2
import zlib
import math
BATCH_SIZE=32
HEIGHT=192
WIDTH=256
POINTCLOUDSIZE=16384
OUTPUTPOINTS=1024
REEBSIZE=1024
def loadBinFile(path):
binfile=zlib.decompress(open(path,'rb').read())
p=0
color=np.fromstring(binfile[p:p+BATCH_SIZE*HEIGHT*WIDTH*3],dtype='uint8').reshape((BATCH_SIZE,HEIGHT,WIDTH,3))
p+=BATCH_SIZE*HEIGHT*WIDTH*3
depth=np.fromstring(binfile[p:p+BATCH_SIZE*HEIGHT*WIDTH*2],dtype='uint16').reshape((BATCH_SIZE,HEIGHT,WIDTH))
p+=BATCH_SIZE*HEIGHT*WIDTH*2
rotmat=np.fromstring(binfile[p:p+BATCH_SIZE*3*3*4],dtype='float32').reshape((BATCH_SIZE,3,3))
p+=BATCH_SIZE*3*3*4
ptcloud=np.fromstring(binfile[p:p+BATCH_SIZE*POINTCLOUDSIZE*3],dtype='uint8').reshape((BATCH_SIZE,POINTCLOUDSIZE,3))
ptcloud=ptcloud.astype('float32')/255
beta=math.pi/180*20
viewmat=np.array([[
np.cos(beta),0,-np.sin(beta)],[
0,1,0],[
np.sin(beta),0,np.cos(beta)]],dtype='float32')
rotmat=rotmat.dot(np.linalg.inv(viewmat))
for i in xrange(BATCH_SIZE):
ptcloud[i]=((ptcloud[i]-[0.7,0.5,0.5])/0.4).dot(rotmat[i])+[1,0,0]
p+=BATCH_SIZE*POINTCLOUDSIZE*3
some_other_thing=np.fromstring(binfile[p:p+BATCH_SIZE*REEBSIZE*2*4],dtype='uint16').reshape((BATCH_SIZE,REEBSIZE,4))
p+=BATCH_SIZE*REEBSIZE*2*4
keynames=binfile[p:].split('\n')
data=np.zeros((BATCH_SIZE,HEIGHT,WIDTH,4),dtype='float32')
data[:,:,:,:3]=color*(1/255.0)
data[:,:,:,3]=depth==0
validating=np.array([i[0]=='f' for i in keynames],dtype='float32')
return color,depth,ptcloud,keynames
if __name__=='__main__':
def plotimggrid(imgs,bgvalue=0,hpadding=0,vpadding=0):
if len(imgs)==0:
return np.zeros((1,1,3),dtype='uint8')^bgvalue
ih=max([i.shape[0] for i in imgs])
iw=max([i.shape[1] for i in imgs])
w=min(len(imgs),max(1,int(np.ceil((len(imgs)*ih*iw)**0.5/iw))))
h=((len(imgs)+(w-1))//w)
output=np.zeros((h*ih+(h-1)*vpadding,w*iw+(w-1)*hpadding,3),dtype='uint8')^bgvalue
for i in xrange(len(imgs)):
x0=(i//w)*(ih+vpadding)
y0=(i%w)*(iw+hpadding)
output[x0:x0+imgs[i].shape[0],y0:y0+imgs[i].shape[1]]=imgs[i]
return output
import sys
import show3d
if len(sys.argv)<2:
print 'python traindataviewer.py data/0/0.gz'
sys.exit(0)
ifname=sys.argv[1]
color,depth,ptcloud,keynames=loadBinFile(ifname)
cv2.imshow('color',cv2.resize(plotimggrid(color),(0,0),fx=0.5,fy=0.5))
cv2.imshow('depth',cv2.resize(plotimggrid(np.uint8(depth>>8)[:,:,:,None]+[0,0,0]),(0,0),fx=0.5,fy=0.5))
print 'press q to navigate next, Q to quit'
for i in xrange(len(ptcloud)):
print i,keynames[i]
show3d.showpoints(ptcloud[i])