-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpivot_tuning.py
78 lines (71 loc) · 2.91 KB
/
pivot_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import sys
import pickle
import numpy as np
from PIL import Image
import torch
from tqdm import tqdm
from torch import optim
import torch.nn.functional as F
import math
import torchvision
import lpips
from models.stylegan2.model import Generator
class PivotTuning:
def __init__(self, args):
self.num_steps = args.num_steps
self.lr = args.gt_lr
self.G_ = Generator(1024, 512, 8)
self.G_.load_state_dict(torch.load('pretrained_models/stylegan2-ffhq-config-f.pt')["g_ema"], strict=False)
self.G_ = self.G_.cuda()
self.l2_criterion = torch.nn.MSELoss(reduction='mean')
self.optimizer = optim.Adam(self.G_.parameters(), lr=self.lr)
self.percept = lpips.LPIPS(net="vgg").cuda()
def make_noises(self):
noises_single = self.G_.make_noise()
noises = []
for noise in noises_single:
noises.append(noise.repeat(1, 1, 1, 1).normal_())
for noise in noises:
noise.requires_grad = False
return noises
def train(self, w, real_image):
noises = self.make_noises()
for i in range(self.num_steps):
img_gen, _ = self.G_([w], input_is_latent=True, noise=noises)
img_gen = torch.nn.functional.interpolate(img_gen, size=256)
real_image = torch.nn.functional.interpolate(real_image, size=256)
lossl2 = self.l2_criterion(img_gen, real_image)
p_loss = self.percept(img_gen, real_image).sum()
loss = p_loss + 0.1 * lossl2
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return self.G_, noises
class GeneratorTuning:
def __init__(self, args):
self.latents = torch.load(args.latent_path).unsqueeze(1)
self.g_ema = Generator(1024, 512, 8)
self.g_ema.load_state_dict(torch.load('pretrained_models/stylegan2-ffhq-config-f.pt')["g_ema"], strict=False)
self.g_ema = self.g_ema.eval().cuda()
self.dataloader = args.dataloader
self.checkpoint_dir = args.checkpoint_dir
self.inverted_images = args.inverted_image_path
self.pt = PivotTuning(args)
self.noise_path = args.noise_path
self.noise_save = []
def run(self):
for ff, (fname, image) in enumerate(tqdm(self.dataloader)):
image_name = fname[0]
image = image.cuda()
w = self.latents[ff].cuda()
G_, noises = self.pt.train(w, image)
G_.eval()
torch.save(G_, f'{self.checkpoint_dir}/{image_name}.pt')
img_gen, _ = G_([w], input_is_latent=True, noise=noises)
noise_ = []
for noise in noises:
noise_.append(noise.cpu())
self.noise_save.append(noises)
torchvision.utils.save_image(img_gen, f"{self.inverted_images}/{image_name}.jpg", normalize=True, range=(-1, 1))
torch.save(self.noise_save, self.noise_path)