-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeblurring_shoes_algorithm_2.py
210 lines (178 loc) · 7.66 KB
/
deblurring_shoes_algorithm_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import tensorflow as tf
import keras.backend as K
import numpy as np
from Utils import *
from generators.MotionBlurGenerator import *
from generators.ShoeGenerator import *
K.set_learning_phase(0)
from glob import glob
import os
# paths
Orig_Path = './results/Shoes/Original Images/*.png'
Range_Path = './results/Shoes/Range Images/*.png'
Blur_Path = './results/Shoes/Original Blurs/Test Blurs.npy'
# algorithm constants
REGULARIZORS = [1.0, 0.5, 100.0, 0.001]
LEARNING_RATE = 0.005
RANDOM_RESTARTS = 10
NOISE_STD = 0.01
STEPS = 10000
IMAGE_RANGE = [-1,1]
optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
SAVE_PATH = './results/Shoes/deblurring - alg2 - '+str(int(NOISE_STD*100)) + 'perc noise - ' +str(RANDOM_RESTARTS) + 'RR/deblurring_'
PLOT_LOSS = True
SAVE_RESULTS = True
# -----------------------------------------------------------------------
# loading blur test images
W = np.load(Blur_Path)
BLUR_RES = W.shape[1]
# loading shoes test images
X_Orig = np.array([ imread(path) for path in glob(Orig_Path)])/255
X_Range = np.array([ imread(path) for path in glob(Range_Path)])/255
IMAGE_RES = X_Orig.shape[1]
CHANNELS = X_Orig.shape[-1]
# loading shoes generator
ShoeGen = ShoeGenerator()
ShoeGen.GenerateModel()
ShoeGen.LoadWeights()
ShoeGAN = ShoeGen.GetModels()
ShoeGAN.trainable = False
shoe_latent_dim = ShoeGen.latent_dim
# loading motion blur generator
BLURGen = MotionBlur()
BLURGen.GenerateModel()
BLURGen.LoadWeights()
blur_vae, blur_encoder, blur_decoder = BLURGen.GetModels()
blur_decoder.trainable = False
blur_latent_dim = BLURGen.latent_dim
# check if save dir exists, if not create a new one
try:
os.stat(SAVE_PATH[:-11])
except:
os.mkdir(SAVE_PATH[:-11])
# generating blurry images
Y_np = []
Blurry_Images = []
for i in tqdm(range(len(X_Orig)), ascii=True, desc ='Gen-Test-Blurry'):
x_np = X_Orig[i]
w_np = W[i]
y_np, y_f = GenerateBlurry(x_np, w_np, noise_std = NOISE_STD )
Y_np.append(y_np)
for _ in range(RANDOM_RESTARTS):
Blurry_Images.append(y_f)
Y_np = np.array(Y_np)
Blurry_Images = np.array(Blurry_Images)
# solving deconvolution using Algorithm 2
rr = Blurry_Images.shape[0]
zi_tf = tf.Variable(tf.random_normal(shape=([rr, shoe_latent_dim])), dtype = 'float32')
zk_tf = tf.Variable(tf.random_normal(shape=([rr, blur_latent_dim])), dtype = 'float32')
x_tf = tf.Variable(tf.random_normal(mean = 0.5, stddev = 0.01,shape=([rr, IMAGE_RES,IMAGE_RES,CHANNELS])))
x_G = ShoeGAN(zi_tf)
x_G = tf.reshape(x_G, shape=(rr,IMAGE_RES,IMAGE_RES,CHANNELS))
x_G = (x_G + 1)/2
y_fourier = tf.placeholder(shape=(rr, IMAGE_RES,IMAGE_RES,CHANNELS), dtype='complex64')
blur = blur_decoder(zk_tf)
blur = tf.reshape(blur, shape=(rr,BLUR_RES,BLUR_RES))
padding = np.int((IMAGE_RES -BLUR_RES)/2)
blur = tf.pad(blur, [[0,0], [padding,padding],[padding,padding]], 'CONSTANT')
blur_fourier = tf.fft2d( tf.cast(blur, dtype = 'complex64'))
# splitting tensors into 3 channels
y_fourier0 = y_fourier[:,:,:,0]; x_0 = x_tf[:,:,:,0]; x_G0 = x_G[:,:,:,0]
y_fourier1 = y_fourier[:,:,:,1]; x_1 = x_tf[:,:,:,1]; x_G1 = x_G[:,:,:,1]
y_fourier2 = y_fourier[:,:,:,2]; x_2 = x_tf[:,:,:,2]; x_G2 = x_G[:,:,:,2]
# 1st Channel Loss
x_0_fourier = tf.fft2d( tf.cast( x_0, dtype='complex64'))
loss_x0 = tf.reduce_mean( tf.square( tf.abs(y_fourier0 - x_0_fourier*blur_fourier) ), axis=[1,2])
x_Gi0_fourier = tf.fft2d( tf.cast( x_G0, dtype='complex64'))
loss_xG0 = tf.reduce_mean( tf.square( tf.abs(y_fourier0 - x_Gi0_fourier*blur_fourier) ), axis=[1,2])
# 2nd Channel Loss
x_1_fourier = tf.fft2d( tf.cast( x_1, dtype='complex64'))
loss_x1 = tf.reduce_mean( tf.square( tf.abs(y_fourier1 - x_1_fourier*blur_fourier) ), axis=[1,2])
x_Gi1_fourier = tf.fft2d( tf.cast( x_G1, dtype='complex64'))
loss_xG1 = tf.reduce_mean( tf.square( tf.abs(y_fourier1 - x_Gi1_fourier*blur_fourier) ), axis=[1,2])
# 3rd Channel Loss
x_2_fourier = tf.fft2d( tf.cast( x_2, dtype='complex64'))
loss_x2 = tf.reduce_mean( tf.square( tf.abs(y_fourier2 - x_2_fourier*blur_fourier) ), axis=[1,2])
x_Gi2_fourier = tf.fft2d( tf.cast( x_G2, dtype='complex64'))
loss_xG2 = tf.reduce_mean( tf.square( tf.abs(y_fourier2 - x_Gi2_fourier*blur_fourier) ), axis=[1,2])
Loss_xG_tf = tf.constant(REGULARIZORS[0])*(loss_xG0 + loss_xG1 + loss_xG2)
Loss_x_tf = tf.constant(REGULARIZORS[1])*(loss_x0 + loss_x1 + loss_x2)
x_minus_xG_tf = tf.constant(REGULARIZORS[2])*tf.reduce_mean( tf.square( tf.abs(x_tf - x_G)), axis=[1,2,3])
LossTV_tf = tf.constant(REGULARIZORS[3])*tf.image.total_variation(x_tf)
TotalLoss_tf = Loss_xG_tf + Loss_x_tf + x_minus_xG_tf + LossTV_tf
opt = optimizer.minimize(TotalLoss_tf, var_list = [zi_tf, zk_tf, x_tf])
sess = K.get_session()
sess.run(tf.variables_initializer([zi_tf, zk_tf, x_tf]))
Losses = []
# running optimizer steps
for i in tqdm(range(STEPS), ascii=True, desc = 'Solving Deconv.'):
losses = sess.run([opt, TotalLoss_tf, Loss_xG_tf, Loss_x_tf, x_minus_xG_tf],
feed_dict = {y_fourier: Blurry_Images})
Losses.append([loss for loss in losses[1:] ])
Losses = np.array(Losses)
zi_hat, zk_hat, x_hat = sess.run([zi_tf, zk_tf, x_tf])
tmp = []
for i in range(4):
tmp.append( [loss[i] for loss in Losses])
Losses = tmp
TotalLoss, Loss_xG, Loss_x, x_minus_xG = Losses
# convergence plots
if PLOT_LOSS:
plt.figure(figsize=(10,5))
plt.subplot(2,2,1)
plt.plot(np.mean(TotalLoss, axis=1)); plt.title('Total Loss')
plt.subplot(2,2,2)
plt.plot(np.mean(Loss_x, axis=1)); plt.title('x Loss')
plt.subplot(2,2,3)
plt.plot(np.mean(Loss_xG, axis=1)); plt.title('xG Loss')
plt.subplot(2,2,4)
plt.plot(np.mean(x_minus_xG, axis=1)); plt.title('x - xG')
plt.show()
# extracting best images from random restarts with minimum residual error
X_Hat = []
XG_Hat = []
W_Hat = []
for i in range(len(X_Orig)):
x_i = X_Orig[i]
zi_hat_i = zi_hat[i*RANDOM_RESTARTS:(i+1)*RANDOM_RESTARTS]
zk_hat_i = zk_hat[i*RANDOM_RESTARTS:(i+1)*RANDOM_RESTARTS]
x_hat_i = x_hat[i*RANDOM_RESTARTS:(i+1)*RANDOM_RESTARTS]
w_hat_i = blur_decoder.predict(zk_hat_i)[:,:,:,0]
x_hat_i = np.clip(x_hat_i, 0, 1)
loss_i = [ComputeResidual(Y_np[i], x, w) for x,w in zip(x_hat_i,w_hat_i)]
min_loss_loc = np.argmin(loss_i)
zi_hat_recov = zi_hat_i[min_loss_loc].reshape([1,shoe_latent_dim])
zk_hat_recov = zk_hat_i[min_loss_loc].reshape([1,blur_latent_dim])
x_hat_recov = x_hat_i[min_loss_loc]
w_hat = blur_decoder.predict(zk_hat_recov).reshape(BLUR_RES,BLUR_RES)
xg_hat = ShoeGAN.predict(zi_hat_recov).reshape(IMAGE_RES,IMAGE_RES,CHANNELS)
X_Hat.append(x_hat_recov); W_Hat.append(w_hat); XG_Hat.append(xg_hat)
X_Hat = np.array(X_Hat)
W_Hat = np.array(W_Hat)
XG_Hat = np.array(XG_Hat)
# normalizing images
X_Hat = np.clip(X_Hat, 0,1)
XG_Hat = (XG_Hat + 1)/2
# calculating psnr and ssim --- in paper both PSNR and SSIM where computed
# using matlab
PSNR = []; SSIM = []
for x, x_pred in zip(X_Orig, X_Hat):
psnr = compare_psnr(x, x_pred.astype('float64'))
ssim = compare_ssim(x, x_pred.astype('float64'), multichannel=True)
PSNR.append(psnr); SSIM.append(ssim)
print("PSNR = ", np.mean(PSNR))
print("SSIM = ", np.mean(SSIM))
# saving results
Max = 10**len(str(len(X_Orig)-1))
if SAVE_RESULTS:
for i in range(len(X_Orig)):
Save_Results(path = SAVE_PATH + str(i+Max)[1:],
x_np = None,
w_np = None,
y_np = Y_np[i],
y_np_range = None ,
x_hat_test = X_Hat[i],
w_hat_test = W_Hat[i],
x_range = None,
x_hat_range = XG_Hat[i],
w_hat_range = None, clip=True)