Skip to content

Latest commit

 

History

History
270 lines (199 loc) · 11.1 KB

README.md

File metadata and controls

270 lines (199 loc) · 11.1 KB

🐤 Watermark Anything

Implementation and pretrained models for the paper Watermark Anything. Our approach allows for embedding (possibly multiple) localized watermarks into images.

[arXiv] [Colab] [Podcast] [HN]

Watermark Anything Overview

📰 News

[December 12, 2024] - New WAM Model Released Under MIT License!

  • 📢 We are excited to announce the release of the weights for our new model, trained on a subset of the SA-1B dataset, now available under the MIT License.
  • We've also enhanced the model's robustness, particularly in handling moving watermarked objects in images, and for the rest it should yield similar results than the model in the publication.

Requirements

Installation

This repos was tested with Python 3.10.14, PyTorch 2.5.1, CUDA 12.4, Torchvision 0.20.1:

conda create -n "watermark_anything" python=3.10.14
conda activate watermark_anything
conda install pytorch torchvision pytorch-cuda=12.4 -c pytorch -c nvidia

Install the required packages:

pip install -r requirements.txt

Weights

Download the latest pre-trained model weights - trained on SA-1B and under MIT license - here, or via command line:

wget https://dl.fbaipublicfiles.com/watermark_anything/wam_mit.pth -P checkpoints/
Download the weights of the model from the publication (Non commercial License)

The weights of the original model used in the publication are also available:

wget https://dl.fbaipublicfiles.com/watermark_anything/wam_coco.pth -P checkpoints/

You can also download the model using Hugging Face via:

from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(
    repo_id="facebook/watermark-anything",
    filename="checkpoint.pth"
)

Inference

See notebooks/inference.ipynb for a notebook with the following scripts as well as vizualizations.

Imports, load model and specify folder with images to watermark:
import os
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision.utils import save_image

from watermark_anything.data.metrics import msg_predict_inference
from notebooks.inference_utils import (
    load_model_from_checkpoint, default_transform, unnormalize_img,
    create_random_mask, plot_outputs, msg2str
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the model from the specified checkpoint
exp_dir = "checkpoints"
json_path = os.path.join(exp_dir, "params.json")
ckpt_path = os.path.join(exp_dir, 'checkpoint.pth')
wam = load_model_from_checkpoint(json_path, ckpt_path).to(device).eval()

# Define the directory containing the images to watermark
img_dir = "assets/images"  # Directory containing the original images
output_dir = "outputs"  # Directory to save the watermarked images
os.makedirs(output_dir, exist_ok=True)

Tip

You can specify the wam.scaling_w factor, which controls the imperceptibility/robustness trade-off. Increasing it will lead to worse images but more robust watermarks, and vice versa. By default, it is set to 2.0, feel free to increase or decrease it to test how it influences the metrics.

Single Watermark

Example of script for watermark embedding, detection and decoding for one message:

# Define a 32-bit message to be embedded into the images
wm_msg = torch.randint(0, 2, (32,)).float().to(device)

# Proportion of the image to be watermarked (0.5 means 50% of the image).
# This is used here to show the watermark localization property. In practice, you may want to use a predifined mask or the entire image.
proportion_masked = 0.5

# Iterate over each image in the directory
for img_ in os.listdir(img_dir):
    # Load and preprocess the image
    img_path = os.path.join(img_dir, img_)
    img = Image.open(img_path).convert("RGB")
    img_pt = default_transform(img).unsqueeze(0).to(device)  # [1, 3, H, W]
    
    # Embed the watermark message into the image
    outputs = wam.embed(img_pt, wm_msg)

    # Create a random mask to watermark only a part of the image
    mask = create_random_mask(img_pt, num_masks=1,mask_percentage=proportion_masked)  # [1, 1, H, W]
    img_w = outputs['imgs_w'] * mask + img_pt * (1 - mask)  # [1, 3, H, W]

    # Detect the watermark in the watermarked image
    preds = wam.detect(img_w)["preds"]  # [1, 33, 256, 256]
    mask_preds = F.sigmoid(preds[:, 0, :, :])  # [1, 256, 256], predicted mask
    bit_preds = preds[:, 1:, :, :]  # [1, 32, 256, 256], predicted bits
    
    # Predict the embedded message and calculate bit accuracy
    pred_message = msg_predict_inference(bit_preds, mask_preds).cpu().float()  # [1, 32]
    bit_acc = (pred_message == wm_msg).float().mean().item()

    # Save the watermarked image and the detection mask
    mask_preds_res = F.interpolate(mask_preds.unsqueeze(1), size=(img_pt.shape[-2], img_pt.shape[-1]), mode="bilinear", align_corners=False)  # [1, 1, H, W]
    save_image(unnormalize_img(img_w), f"{output_dir}/{img_}_wm.png")
    save_image(mask_preds_res, f"{output_dir}/{img_}_pred.png")
    save_image(mask, f"{output_dir}/{img_}_target.png")
    
    # Print the predicted message and bit accuracy for each image
    print(f"Predicted message for image {img_}: ", pred_message[0].numpy())
    print(f"Bit accuracy for image {img_}: ", bit_acc)

Multiple Watermarks

Example of script for watermark embedding, detection and decoding for multiple messages:
from inference_utils import multiwm_dbscan

# DBSCAN parameters for detection
epsilon = 1 # min distance between decoded messages in a cluster
min_samples = 500 # min number of pixels in a 256x256 image to form a cluster

# multiple 32 bit message to hide (could be more than 2; does not have to be 1 minus the other)
wm_msgs = torch.randint(0, 2, (2, 32)).float().to(device)
proportion_masked = 0.1 # max proportion per watermark, randomly placed

for img_ in os.listdir(img_dir):
    img = os.path.join(img_dir, img_)
    img = Image.open(img, "r").convert("RGB")  
    img_pt = default_transform(img).unsqueeze(0).to(device)
    # Mask to use. 1 values correspond to pixels where the watermark will be placed.
    masks = create_random_mask(img_pt, num_masks=len(wm_msgs), mask_percentage=proportion_masked)  # create one random mask per message
    multi_wm_img = img_pt.clone()
    for ii in range(len(wm_msgs)):
        wm_msg, mask = wm_msgs[ii].unsqueeze(0), masks[ii]
        outputs = wam.embed(img_pt, wm_msg) 
        multi_wm_img = outputs['imgs_w'] * mask + multi_wm_img * (1 - mask)  # [1, 3, H, W]

    # Detect the watermark in the multi-watermarked image
    preds = wam.detect(multi_wm_img)["preds"]  # [1, 33, 256, 256]
    mask_preds = F.sigmoid(preds[:, 0, :, :])  # [1, 256, 256], predicted mask
    bit_preds = preds[:, 1:, :, :]  # [1, 32, 256, 256], predicted bits

    # positions has the cluster number at each pixel. can be upsaled back to the original size.
    centroids, positions = multiwm_dbscan(bit_preds, mask_preds, epsilon = epsilon, min_samples = min_samples)
    centroids_pt = torch.stack(list(centroids.values()))

    print(f"number messages found in image {img_}: {len(centroids)}")
    for centroid in centroids_pt:
        print(f"found centroid: {msg2str(centroid)}")
        bit_acc = (centroid == wm_msgs).float().mean(dim=1)
        # get message with maximum bit accuracy
        bit_acc, idx = bit_acc.max(dim=0)
        hamming = int(torch.sum(centroid != wm_msgs[idx]).item())
        print(f"bit accuracy: {bit_acc.item()} - hamming distance: {hamming}/{len(wm_msgs[0])}")

Training

Pretraining

Pretraining for robustness:

torchrun --nproc_per_node=2  train.py \
    --local_rank -1  --output_dir <PRETRAINING_OUTPUT_DIRECTORY> \
    --augmentation_config configs/all_augs.yaml --extractor_model sam_base --embedder_model vae_small \
    --img_size 256 --batch_size 16 --batch_size_eval 32 --epochs 300 \
    --optimizer "AdamW,lr=5e-5" --scheduler "CosineLRScheduler,lr_min=1e-6,t_initial=300,warmup_lr_init=1e-6,warmup_t=10" \
    --seed 42 --perceptual_loss none --lambda_i 0.0 --lambda_d 0.0 --lambda_w 1.0 --lambda_w2 10.0 \
    --nbits 32 --scaling_i 1.0 --scaling_w 0.3 \
    --train_dir <COCO_TRAIN_DIRECTORY_PATH> --train_annotation_file <COCO_TRAIN_ANNOTATION_FILE_PATH> \
    --val_dir <COCO_VALIDATION_DIRECTORY_PATH> --val_annotation_file <COCO_VALIDATION_ANNOTATION_FILE_PATH> 

Finetuning for Multiple Watermarks and Imperceptibility

Finetuning the model for handling multiple watermarks and ensuring imperceptibility:

torchrun --nproc_per_node=8 train.py \
    --local_rank 0 --debug_slurm --output_dir <FINETUNING_OUTPUT_DIRECTORY>\
    --augmentation_config configs/all_augs_multi_wm.yaml --extractor_model sam_base --embedder_model vae_small \
    --resume_from <PRETRAINING_OUTPUT_DIRECTORY>/checkpoint.pth \
    --attenuation jnd_1_3_blue --img_size 256 --batch_size 8 --batch_size_eval 16 --epochs 200 \
    --optimizer "AdamW,lr=1e-4" --scheduler "CosineLRScheduler,lr_min=1e-6,t_initial=100,warmup_lr_init=1e-6,warmup_t=5" \
    --seed 42 --perceptual_loss none --lambda_i 0 --lambda_d 0 --lambda_w 1.0 --lambda_w2 6.0 \
    --nbits 32 --scaling_i 1.0 --scaling_w 2.0 --multiple_w 1 --roll_probability 0.2 \
    --train_dir <COCO_TRAIN_DIRECTORY_PATH> --train_annotation_file <COCO_TRAIN_ANNOTATION_FILE_PATH> \
    --val_dir <COCO_VALIDATION_DIRECTORY_PATH> --val_annotation_file <COCO_VALIDATION_ANNOTATION_FILE_PATH>

License

The code and the new model trained on the SA-1B dataset are under the MIT License!

Tip

In the paper, the evaluated model was trained on the COCO dataset (with additional safety filters and where faces are blurred). For reproducibility purposes, we also release the weights (see above "Weights" subsection), but this model is under the CC-BY-NC License.

Contributing

See contributing and the code of conduct.

See Also

Citation

If you find this repository useful, please consider giving a star ⭐ and please cite as:

@inproceedings{sander2025watermark,
  title={Watermark Anything with Localized Messages},
  author={Sander, Tom and Fernandez, Pierre and Durmus, Alain and Furon, Teddy and Douze, Matthijs},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2025}
}