-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dl.py
180 lines (161 loc) · 5.37 KB
/
train_dl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import time
import os
import torch
import argparse
from trashdetect_engine.models.segmentation_models import (
get_instance_segmentation_model,
)
def get_args_parser():
parser = argparse.ArgumentParser(
"Prepare instance segmentation task with Mask R-CNN"
)
parser.add_argument(
"--output_dir",
help="path to save checkpoints",
default=f"/mnt/ssd1T/TACO/detect-waste/MaskRCNN/output",
type=str,
)
parser.add_argument(
"--images_dir",
help="path to images directory",
default="/mnt/ssd1T/TACO/TACO/data",
type=str,
)
parser.add_argument(
"--anno_name",
help="path to annotation json (part name)",
default="/mnt/ssd1T/TACO/detect-waste/annotations/annotations_binary",
type=str,
)
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
# Devices
parser.add_argument("--batch_size", default=8, type=int)
parser.add_argument("--test-batch_size", default=2, type=int)
parser.add_argument("--num_workers", default=4, type=int)
parser.add_argument("--gpu_id", default=0, type=int)
# Learning
parser.add_argument("--num_epochs", default=26, type=int)
parser.add_argument("--lr", default=0.001, type=float)
parser.add_argument("--weight_decay", default=0.0005, type=float)
parser.add_argument(
"--lr-step-size", default=0, type=int, help="decrease lr every step-size epochs"
)
parser.add_argument(
"--lr-steps",
default=[16, 22],
nargs="+",
type=int,
help="decrease lr every step-size epochs",
)
parser.add_argument(
"--lr-gamma",
default=0.1,
type=float,
help="decrease lr by a factor of lr-gamma",
)
parser.add_argument(
"--optimizer",
help="Chose type of optimization algorithm, SGD as default",
default="SGD",
choices=["AdamW", "SGD"],
type=str,
)
# Model
parser.add_argument("--num_classes", default=2, type=int)
parser.add_argument(
"--model",
default="maskrcnn_resnet50_fpn",
type=str,
choices=[
"maskrcnn_resnet50_fpn",
"fasterrcnn_resnet50_fpn",
"fasterrcnn_mobilenet_v3_large_fpn",
"fasterrcnn_mobilenet_v3_large_320_fpn",
"retinanet_resnet50_fpn",
"efficientnet-b0",
"efficientnet-b1",
"efficientnet-b2",
"efficientnet-b3",
"efficientnet-b4",
"efficientnet-b5",
"efficientnet-b6",
],
)
##
parser.add_argument("--wandb", action="store_true")
return parser
from trashdetect_engine.engine import WasteDetectModelDL
from trashdetect_engine.data import WasteDatasetDL
from pytorch_lightning import Trainer
if __name__ == "__main__":
parser = get_args_parser()
args = parser.parse_args()
args.lr = 0.001
args.optimizer = "AdamW"
args.test_batch_size = 1
args.batch_size = 4
data_module_dl = WasteDatasetDL(args, return_masks=True)
# if args.test_dataloader:
# for batch in train_dataloader:
# pass
# our dataset has two classes only - background and waste
num_classes = args.num_classes
# get the model using our helper function
model = get_instance_segmentation_model(num_classes, args.model)
# construct an optimizer
params = [p for p in model.parameters() if p.requires_grad]
if args.optimizer == "AdamW":
optimizer = torch.optim.AdamW(
params, lr=args.lr, weight_decay=args.weight_decay
)
if args.optimizer == "SGD":
optimizer = torch.optim.SGD(
params, lr=args.lr, momentum=0.9, weight_decay=args.weight_decay
)
# and a learning rate scheduler
if args.lr_step_size != 0:
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma
)
else:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=args.lr_steps, gamma=args.lr_gamma
)
from trashdetect_engine.data import get_coco_api_from_dataset
from trashdetect_engine.engine import _get_iou_types
from trashdetect_engine.coco_eval import CocoEvaluator
from trashdetect_engine import utils
coco = get_coco_api_from_dataset(data_module_dl.dataset_val)
iou_types = _get_iou_types(model)
coco_evaluator = CocoEvaluator(coco, iou_types)
model_dl = WasteDetectModelDL(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
coco_evaluator=coco_evaluator,
args=args,
)
# define model
device = (
torch.device(f"cuda:{args.gpu_id}")
if torch.cuda.is_available()
else torch.device("cpu")
)
# from pytorch_lightning.loggers import WandbLogger
# wandb_logger = WandbLogger()
# trainer = Trainer(logger=wandb_logger)
trainer = Trainer(
devices=args.gpu_id + 1,
accelerator="gpu" if torch.cuda.is_available() else "cpu",
max_epochs=args.num_epochs,
callbacks=[],
# fast_dev_run=5, # Runs 5 batches
# limit_train_batches=0.01,
)
trainer.fit(model_dl, data_module_dl)