-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhistoriography.py
226 lines (175 loc) · 7.77 KB
/
historiography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from spacetime import st_sanity
from itertools import takewhile
from utils import i_flat_zip_longest, pmts
class Historiography(object):
"""
This module contains several equivalent approaches at dealing with a "Historiography" (for lack of a better word):
An append-only list of nout-for-note hashes, that may or may not be somehow related.
Another way of saying this is: it's a mutable (grow only) structure that allows you to keep track of the present,
assigning a unique consecutive number to each version of the present.
The need for this concept flows directly from a Clef with an operation Replace(index, any_nout_hash), as opposed to
only being able to replace with consecutive hashes.
The idea is: the nout-hashes are often related, and you want to be able to express how that's so.
>>> from dsn.s_expr.legato import NoteNout, NoteCapo, NoteSlur, NoteNoutHash
>>> from dsn.s_expr.clef import TextBecome
>>> from hashstore import NoutHashStore
>>>
>>> from historiography import Historiography
>>>
>>> possible_timelines = NoutHashStore(NoteNoutHash, NoteNout, NoteCapo)
>>>
>>> capo = NoteCapo()
>>>
>>> hash_capo = possible_timelines.add(capo)
>>>
>>> hash_a = possible_timelines.add(NoteSlur(TextBecome("a"), hash_capo))
>>> hash_b = possible_timelines.add(NoteSlur(TextBecome("b"), hash_capo))
>>> hash_ac = possible_timelines.add(NoteSlur(TextBecome("ac"), hash_a))
>>> hash_acd = possible_timelines.add(NoteSlur(TextBecome("acd"), hash_ac))
>>>
>>> historiography = Historiography(possible_timelines)
>>> a = historiography.append(hash_a)
>>> b = historiography.append(hash_b)
>>> ac = historiography.append(hash_ac)
>>> acd = historiography.append(hash_acd)
>>>
>>> list(historiography.whats_new(a)) == [hash_a]
True
>>> historiography.point_of_divergence(a) is None
True
>>> list(historiography.whats_made_alive(a)) == [hash_a]
True
>>> list(historiography.whats_made_dead(a)) == []
True
>>> list(historiography.whats_new(b)) == [hash_b]
True
>>> historiography.point_of_divergence(b) is None
True
>>> list(historiography.whats_made_alive(b)) == [hash_b]
True
>>> list(historiography.whats_made_dead(b)) == [hash_a]
True
>>> list(historiography.whats_new(ac)) == [hash_ac]
True
>>> # N.B.: pod with _last state_, for which we must go back all the way to the beginning
>>> historiography.point_of_divergence(ac) is None
True
>>> list(historiography.whats_made_alive(ac)) == [hash_ac, hash_a]
True
>>> list(historiography.whats_made_dead(ac)) == [hash_b]
True
>>> historiography.point_of_divergence(acd) == hash_ac
True
"""
def __init__(self, possible_timelines):
self.possible_timelines = possible_timelines
# `set_values` model the consecutive "states" of the Historiography.
self.set_values = []
# self.all_nouts & self.prev_seen_in_all_nouts are the internal bookkeeping structures.
self.all_nouts = set([])
self.prev_seen_in_all_nouts = []
self.length = 0
# When using Historiography to model a single historiography, a single grow-only datastructure is a nice
# optimization: the objects produced by x_append are not affected by further append-actions.
# Of course, Historiography is not always used to model a single historiography (especially now that we cache
# multiple ones in a results_lookup)
# I'm unwilling to let go of the optimization (I think it provides a nice hint on how to go forward) so I'm
# leaving it in, but with the cludge "self.x_appended" which copies if x_append has already been called once.
self.x_appended = False
def x_append(self, nout_hash):
if self.x_appended:
use = Historiography(self.possible_timelines)
use.set_values = self.set_values[:]
use.all_nouts = self.all_nouts.copy()
use.prev_seen_in_all_nouts = self.prev_seen_in_all_nouts[:]
use.length = self.length
else:
self.x_appended = True
use = self
index = use.append(nout_hash)
return HistoriographyAt(use, index)
def append(self, nout_hash):
self.set_values.append(nout_hash)
prev_seen_in_all_nouts = None
for nout_hash in self.possible_timelines.all_preceding_nout_hashes(nout_hash):
if nout_hash in self.all_nouts:
prev_seen_in_all_nouts = nout_hash
break
self.all_nouts.add(nout_hash)
self.prev_seen_in_all_nouts.append(prev_seen_in_all_nouts)
self.length += 1
return self.length - 1
def whats_new_pod(self, index):
"""what's the point of divergence with whats_new, i.e. what's the last thing you already saw?"""
if index == 0:
return None # special value, indicating "nothing was seen before"
return self.prev_seen_in_all_nouts[index] # either a nout_hash, or None
def whats_new(self, index):
"""in anti-chronological order"""
return takewhile(
lambda v: v != self.prev_seen_in_all_nouts[index],
self.possible_timelines.all_preceding_nout_hashes(self.set_values[index]))
def point_of_divergence(self, index):
"""Going back in time, what's the first nout_hash you already saw before?"""
if index == 0:
return None
return find_point_of_divergence(
self.possible_timelines.all_preceding_nout_hashes(self.set_values[index]),
self.possible_timelines.all_preceding_nout_hashes(self.set_values[index - 1]))
def whats_made_alive(self, index):
"""in anti-chronological order"""
if index == 0:
return self.whats_new(index)
pod = self.point_of_divergence(index)
return takewhile(
lambda v: v != pod,
self.possible_timelines.all_preceding_nout_hashes(self.set_values[index]))
def whats_made_dead(self, index):
if index == 0:
return iter([])
pod = self.point_of_divergence(index)
return takewhile(
lambda v: v != pod,
self.possible_timelines.all_preceding_nout_hashes(self.set_values[index - 1]))
class HistoriographyAt(object):
"""Represents a particular point in time in the Historiography's life"""
def __init__(self, historiography, index):
pmts(index, int)
self.historiography = historiography
self.index = index
def nout_hash(self):
return self.historiography.set_values[self.index]
def whats_new_pod(self):
return self.historiography.whats_new_pod(self.index)
def whats_new(self):
return self.historiography.whats_new(self.index)
def point_of_divergence(self):
return self.historiography.point_of_divergence(self.index)
def whats_made_alive(self):
return self.historiography.made_alive(self.index)
def whats_made_dead(self):
return self.historiography.made_dead(self.index)
def find_point_of_divergence(history_a, history_b):
seen = set([])
for nout_hash in i_flat_zip_longest(history_a, history_b):
if nout_hash in seen:
return nout_hash
seen.add(nout_hash)
return None
class HistoriographyTreeNode(object):
def __init__(self, children, historiographies, t2s, s2t):
st_sanity(t2s, s2t)
self.children = children
self.historiographies = historiographies
self.t2s = t2s
self.s2t = s2t
def __repr__(self):
return "YATN"
def t_lookup(htn, t_path):
if t_path == []:
return htn
s_addr = htn.t2s[t_path[0]]
if s_addr is None:
return None
result = t_lookup(htn.children[s_addr], t_path[1:])
return result