-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
executable file
·246 lines (221 loc) · 8.12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import sys
import logging
import argparse
from tensorboardX import SummaryWriter
SUMMARY_WRITER_DIR_NAME = 'runs'
def get_argument_parser():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help=
"The output directory where the model checkpoints and predictions will be written."
)
# Other parameters
parser.add_argument("--train_file",
default=None,
type=str,
help="Input of compiled dataset for train")
parser.add_argument(
"--predict_file",
default=None,
type=str,
help="Input of compiled dataset for predict"
)
parser.add_argument(
"--max_seq_length",
default=384,
type=int,
help=
"The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded."
)
parser.add_argument(
"--doc_stride",
default=128,
type=int,
help=
"When splitting up a long document into chunks, how much stride to take between chunks."
)
parser.add_argument(
"--max_query_length",
default=64,
type=int,
help=
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_predict",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--predict_batch_size",
default=8,
type=int,
help="Total batch size for predictions.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument(
"--warmup_proportion",
default=0.1,
type=float,
help=
"Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
"of training.")
parser.add_argument(
"--n_best_size",
default=20,
type=int,
help=
"The total number of n-best predictions to generate in the nbest_predictions.json "
"output file.")
parser.add_argument(
"--max_answer_length",
default=30,
type=int,
help=
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another.")
parser.add_argument(
"--verbose_logging",
action='store_true',
help=
"If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument(
'--gradient_accumulation_steps',
type=int,
default=1,
help=
"Number of updates steps to accumulate before performing a backward/update pass."
)
parser.add_argument(
"--do_lower_case",
action='store_true',
help=
"Whether to lower case the input text. True for uncased models, False for cased models."
)
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument(
'--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument(
'--wall_clock_breakdown',
action='store_true',
default=False,
help=
"Whether to display the breakdown of the wall-clock time for foraward, backward and step"
)
parser.add_argument(
'--loss_scale',
type=float,
default=0,
help=
"Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument("--model_file",
type=str,
default="0",
help="Path to the Pretrained BERT Encoder File.")
parser.add_argument("--max_grad_norm",
default=1.,
type=float,
help="Gradient clipping for FusedAdam.")
parser.add_argument('--job_name',
type=str,
default=None,
help='Output path for Tensorboard event files.')
parser.add_argument(
'--preln',
action='store_true',
default=False,
help=
"Whether to display the breakdown of the wall-clock time for foraward, backward and step"
)
parser.add_argument(
'--loss_plot_alpha',
type=float,
default=0.2,
help='Alpha factor for plotting moving average of loss.')
parser.add_argument(
'--max_steps',
type=int,
default=sys.maxsize,
help=
'Maximum number of training steps of effective batch size to complete.'
)
parser.add_argument(
'--max_steps_per_epoch',
type=int,
default=sys.maxsize,
help=
'Maximum number of training steps of effective batch size within an epoch to complete.'
)
parser.add_argument('--print_steps',
type=int,
default=100,
help='Interval to print training details.')
parser.add_argument('--deepspeed_transformer_kernel',
default=False,
action='store_true',
help='Use DeepSpeed transformer kernel to accelerate.')
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument(
'--ckpt_type',
type=str,
default="DS",
help="Checkpoint's type, DS - DeepSpeed, TF - Tensorflow, HF - Huggingface.")
parser.add_argument(
"--origin_bert_config_file",
type=str,
default=None,
help="The config json file corresponding to the non-DeepSpeed pre-trained BERT model."
)
return parser
def get_summary_writer(name, base=".."):
"""Returns a tensorboard summary writer
"""
return SummaryWriter(
log_dir=os.path.join(base, SUMMARY_WRITER_DIR_NAME, name))
def write_summary_events(summary_writer, summary_events):
for event in summary_events:
summary_writer.add_scalar(event[0], event[1], event[2])
def is_time_to_exit(args, epoch_steps=0, global_steps=0):
return (epoch_steps >= args.max_steps_per_epoch) or \
(global_steps >= args.max_steps)
def check_early_exit_warning(args):
# Issue warning if early exit from epoch is configured
if args.max_steps < sys.maxsize:
logging.warning(
'Early training exit is set after {} global steps'.format(
args.max_steps))
if args.max_steps_per_epoch < sys.maxsize:
logging.warning('Early epoch exit is set after {} global steps'.format(
args.max_steps_per_epoch))