-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathgeneration_to_folding.py
153 lines (117 loc) · 5.36 KB
/
generation_to_folding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import subprocess
import torch
import numpy as np
import biotite.structure.io as bsio
from Bio import SeqIO
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
EsmForProteinFolding,
set_seed
)
from stripedhyena.tokenizer import CharLevelTokenizer
def main():
# Load command-line arguments.
ap = argparse.ArgumentParser()
# generation args:
default_prompt = (
"|d__Bacteria;"
+"p__Pseudomonadota;"
+"c__Gammaproteobacteria;"
+"o__Enterobacterales;"
+"f__Enterobacteriaceae;"
+"g__Escherichia;"
+"s__Escherichia|"
)
ap.add_argument('--prompt', type=str, default=default_prompt, help='Prompt for generation')
ap.add_argument("--model-name", type=str, default="togethercomputer/evo-1-131k-base", help='Hugging Face model name')
ap.add_argument('--temperature', type=float, default=1.0, help='Temperature during sampling')
ap.add_argument('--top-k', type=int, default=4, help='Top K during sampling')
ap.add_argument('--top-p', type=float, default=1., help='Top P during sampling')
ap.add_argument('--cached-generation', type=bool, default=True, help='Use KV caching during generation')
ap.add_argument("--max-new-tokens", type=int, default=1024, help='Max new tokens during sampling')
ap.add_argument("--repetition-penalty", type=float, default=1.0, help='Repetition penalty during sampling')
ap.add_argument("--penalty-alpha", type=float, default=0.0, help='Penalty alpha during sampling')
# output args:
ap.add_argument("--sequence-fasta", type=str, default='sequence.fasta', help='Sequence fasta file')
ap.add_argument("--proteins-fasta", type=str, default='proteins.fasta', help='Proteins fasta file')
ap.add_argument("--structure-pdb", type=str, default='structure.pdb', help='Structure PDB file')
# misc args:
ap.add_argument('--device', type=str, default='cuda:0', help='Device for generation')
ap.add_argument('--verbose', type=int, default=1, help='Verbosity level')
ap.add_argument('--seed', type=int, default=12345, help='Random seed')
args = ap.parse_args()
# Set seed.
torch.manual_seed(args.seed) # pytorch random seed
np.random.seed(args.seed) # numpy random seed
set_seed(args.seed) # huggingface random seed
# Load model config.
model_config = AutoConfig.from_pretrained(args.model_name, trust_remote_code=True)
model_config.use_cache = True
# Load model.
print(f'Loading {args.model_name}...')
model = AutoModelForCausalLM.from_pretrained(
args.model_name,
config=model_config,
trust_remote_code=True,
)
model = model.to(args.device)
model.backbone = model.backbone.to(torch.bfloat16)
# Make character-level tokenizer.
tokenizer = CharLevelTokenizer(vocab_size=512)
# Encode prompt.
print(f'Prompting {args.model_name} with: ', args.prompt)
prompt_ids = torch.tensor(tokenizer.tokenize(args.prompt)).to(torch.long).to(args.device)
# Sample sequences from Evo.
print('Generating...')
gen_token_ids = model.generate(
prompt_ids.unsqueeze(0), # add batch dimension
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
top_k=args.top_k,
top_p=args.top_p,
penalty_alpha=args.penalty_alpha,
do_sample=args.temperature is not None,
eos_token_id=tokenizer.eos_id,
pad_token_id=tokenizer.pad_id,
use_cache=args.cached_generation,
)
# Decode.
dna_seq = tokenizer.detokenize_batch(gen_token_ids)[0]
print('Generated DNA sequence: ', dna_seq)
# Saving generated sequence to fasta.
dna_seq_record = SeqRecord(Seq(dna_seq), id="evo-dna", description="DNA sequence generated by Evo.")
with open(args.sequence_fasta, "w") as output_handle:
SeqIO.write(dna_seq_record, output_handle, "fasta")
print('Saved DNA sequence to: ', args.sequence_fasta)
# Predict genes from sequence.
print('Predicting genes with prodigal...')
cmd = f'prodigal -i {args.sequence_fasta} -a {args.proteins_fasta} -o genes.gbk -p meta'
subprocess.run(cmd, shell=True)
# Load ESMFold.
print('Loading ESMFold...')
esmfold = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1")
esmfold = esmfold.to(args.device)
esmfold.esm = esmfold.esm.half()
# Load ESMFold tokenizer.
esmfold_tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
# Fold proteins.
print('Folding proteins with EMSFold...')
for i, protein_record in enumerate(SeqIO.parse(args.proteins_fasta, "fasta")):
protein_seq = str(protein_record.seq)[:-1] # remove stop codon
print('Protein sequence: ', protein_seq)
with torch.inference_mode():
esmfold_in = esmfold_tokenizer([protein_seq], return_tensors="pt", add_special_tokens=False)
esmfold_out = esmfold(**esmfold_in.to(args.device))
esmfold_out_pdb = esmfold.output_to_pdb(esmfold_out)[0]
with open(args.structure_pdb, "w") as f:
f.write(esmfold_out_pdb)
protein_struct = bsio.load_structure(args.structure_pdb, extra_fields=["b_factor"])
print('Folded protein: ', protein_struct)
if __name__ == "__main__":
main()