-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlecture_week_13.R
261 lines (205 loc) · 6.29 KB
/
lecture_week_13.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
library(rethinking)
library(dplyr)
#==========================================================
# Generate a vector of probability values
probabilities <- seq(from = 0, to = 1, by = 0.01)
probabilities
# Compute the odds for each of these probabilities and
# plot the relationship
odds <- probabilities / (1 - probabilities)
odds
plot(probabilities, odds, type = "n")
lines(probabilities, odds)
# Compute the log-odds for each of these probabilities
# and plot the relationship
log_odds <- log(odds)
log_odds
plot(probabilities, log_odds, type = "n")
lines(probabilities, log_odds)
# Convert some log-odds values back to probabilities
# using the logistic function
log_odds_seq <- seq(from = -50, to = 50, by = 1)
log_odds_seq
probs_seq <- logistic(log_odds_seq)
plot(log_odds_seq, probs_seq, type = "n")
lines(log_odds_seq, probs_seq)
#==========================================================
# Chimpanzee prosociality binomial models
# Import the chimpanzee data
data(chimpanzees)
d <- chimpanzees
# Fit an intercept-only binomial GLM
m10.1 <- map(
data = d,
alist(
pulled_left ~ dbinom(1, p),
logit(p) <- a,
a ~ dnorm(0, 10)
)
)
precis(m10.1, prob = 0.97)
# Consider the fit model parameter
exp(0.32) # on the odds scale
logistic(0.32) # on the probability scale
# Fit a more complex binomial GLM considering the effects
# of prosocial on left and condition treatments
m10.3 <- map(
data = d,
alist(
pulled_left ~ dbinom(1, p),
logit(p) <- a + bP*prosoc_left + bPC*prosoc_left*condition,
a ~ dnorm(0, 10) ,
bP ~ dnorm(0, 10) ,
bPC ~ dnorm(0, 10)
)
)
precis(m10.3, prob = 0.97)
# Visualize predictions from model m10.3
# Dummy data for predictions across treatments
d.pred <- data.frame(
prosoc_left = c(0, 1, 0, 1), # right/left/right/left
condition = c(0, 0, 1, 1) # control/control/partner/partner
)
# Build predictions for probability of success using
# "link()"
preds.p <- link(m10.3, data = d.pred)
# Summarize the probability prediction values
preds.p.mean <- apply(preds.p, 2, mean)
preds.p.PI <- apply(preds.p, 2, PI, prob = 0.9)
# Generate an empty plot frame with good axes
plot(0, 0, type = "n", xaxt = "n",
xlab = "prosoc_left/condition",
ylab = "proportion pulled left",
xlim = c(1, 4), ylim = c(0, 1))
axis(1, at = 1:4, labels = c("0/0", "1/0", "0/1", "1/1"))
# Plot raw data, one trend for each of 7 individual
# chimpanzees using "by()"
p <- by(d$pulled_left,
list(d$prosoc_left, d$condition, d$actor), mean)
for (chimp in 1:7)
lines(1:4, as.vector(p[, , chimp]),
col = rangi2, lwd = 1.5)
# Superimpose posterior predictions
lines(1:4, preds.p.mean)
shade(preds.p.PI, 1:4)
# Replicate model m10.3 using aggregated binomial data
# Generate data in an aggregated form
d.aggregated <- d %>%
group_by(prosoc_left, condition) %>%
summarize(
pulled_left_aggregated = sum(pulled_left),
n_trials = n()
) %>%
data.frame()
d.aggregated
# Fit the model using aggregated data
m10.5 <- map(
data = d.aggregated,
alist(
pulled_left_aggregated ~ dbinom(n_trials, p),
logit(p) <- a + bP*prosoc_left + bPC*prosoc_left*condition,
a ~ dnorm(0, 10),
bP ~ dnorm(0, 10),
bPC ~ dnorm(0, 10)
)
)
# Compare model output
precis(m10.5, prob = 0.97)
precis(m10.3, prob = 0.97)
#==========================================================
# Snow goose color binomial models
# Load in hypothetical snow goose data in aggregated
# binomial format
geese <- data.frame(
blue_geese = c(215, 84, 7),
total_geese = c(500, 300, 25),
study_site = c("Site A", "Site B", "Site C")
)
# Add on a variable indicating the proportion of blue
# morphs at each study site
geese$prop_blue <- geese$blue_geese/geese$total_geese
geese
# Plot the raw proportions of blue morphs
plot(prop_blue ~ study_site, data = geese,
ylim = c(0, 0.5))
# Generate dummy variables for site affiliation
geese$site_B <- ifelse(geese$study_site == "Site B", 1, 0)
geese$site_C <- ifelse(geese$study_site == "Site C", 1, 0)
# Fit a binomial GLM using site to predict the
# probability of a goose being the blue morph
goose.model <- map(
data = geese,
alist(
blue_geese ~ dbinom(size = total_geese, prob = p),
logit(p) ~ a + b_site_B*site_B + b_site_C*site_C,
a ~ dnorm(0, 10),
b_site_B ~ dnorm(0, 10),
b_site_C ~ dnorm(0, 10)
)
)
precis(goose.model, prob = 0.97)
# Visualize model inference
# Extract samples from the model posterior
goose.post <- extract.samples(goose.model, n = 10000)
# Show the posterior distribution of the intercept
# parameter (on the log-odds scale), which corresponds
# to study site A
dens(
goose.post$a,
xlab = "Intercept parameter (log-odds scale)"
)
# Show the posterior distribution of the implied
# probability of blue morphs at study site A
dens(
logistic(goose.post$a),
xlab = "Implied probability of a blue goose"
)
# Plot the log-odds of a goose being blue by plotting
# posterior parameter samples
# site A (intercept or reference category)
dens(goose.post$a, xlim = c(-3, 1),
xlab = "Log-odds of a blue goose")
# site B
dens(goose.post$a + goose.post$b_site_B,
add = TRUE, col = "blue")
# site C
dens(goose.post$a + goose.post$b_site_C,
add = TRUE, col = "green")
# Plot the implied probability of a goose being blue by
# plotting posterior parameter samples transformed through
# the logistic function
# site A (intercept or reference category)
dens(logistic(goose.post$a), xlim = c(0, 0.5),
xlab = "Implied probability of a blue goose")
# site B
dens(logistic(goose.post$a + goose.post$b_site_B),
add = TRUE, col = "blue")
# site C
dens(logistic(goose.post$a + goose.post$b_site_C),
add = TRUE, col = "green")
# You can do this same type of prediction plot
# using "link()"
counterfactual.siteA <- data.frame(site_B = 0, site_C = 0)
counterfactual.siteB <- data.frame(site_B = 1, site_C = 0)
counterfactual.siteC <- data.frame(site_B = 0, site_C = 1)
probs.siteA <- link(
goose.model,
data = counterfactual.siteA,
n = 10000
)
probs.siteB <- link(
goose.model,
data = counterfactual.siteB,
n = 10000
)
probs.siteC <- link(
goose.model,
data = counterfactual.siteC,
n = 10000
)
dens(probs.siteA, xlim = c(0, 0.5),
xlab = "Implied probability of a blue goose")
dens(probs.siteB,
add = TRUE, col = "blue")
dens(probs.siteC,
add = TRUE, col = "green")