-
Notifications
You must be signed in to change notification settings - Fork 48
/
sdlaudio.inc
568 lines (520 loc) · 26.2 KB
/
sdlaudio.inc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
//from sdl_audio.h
{**
* Audio format flags.
*
* These are what the 16 bits in SDL_AudioFormat currently mean...
* (Unspecified bits are always zero).
*
*
++-----------------------sample is signed if set
||
|| ++-----------sample is bigendian if set
|| ||
|| || ++---sample is float if set
|| || ||
|| || || +---sample bit size---+
|| || || | |
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
*
* There are macros in SDL 2.0 and later to query these bits.
*}
type
TSDL_AudioFormat = UInt16;
{**
* Audio flags
*}
const
SDL_AUDIO_MASK_BITSIZE = ($FF);
SDL_AUDIO_MASK_DATATYPE = (1 shl 8);
SDL_AUDIO_MASK_ENDIAN = (1 shl 12);
SDL_AUDIO_MASK_SIGNED = (1 shl 15);
function SDL_AUDIO_BITSIZE(x: Cardinal): Cardinal;
function SDL_AUDIO_ISFLOAT(x: Cardinal): Cardinal;
function SDL_AUDIO_ISBIGENDIAN(x: Cardinal): Cardinal;
function SDL_AUDIO_ISSIGNED(x: Cardinal): Cardinal;
function SDL_AUDIO_ISINT(x: Cardinal): Cardinal;
function SDL_AUDIO_ISLITTLEENDIAN(x: Cardinal): Cardinal;
function SDL_AUDIO_ISUNSIGNED(x: Cardinal): Cardinal;
{**
* Audio format flags
*
* Defaults to LSB byte order.
*}
const
AUDIO_U8 = $0008; {**< Unsigned 8-bit samples *}
AUDIO_S8 = $8008; {**< Signed 8-bit samples *}
AUDIO_U16LSB = $0010; {**< Unsigned 16-bit samples *}
AUDIO_S16LSB = $8010; {**< Signed 16-bit samples *}
AUDIO_U16MSB = $1010; {**< As above, but big-endian byte order *}
AUDIO_S16MSB = $9010; {**< As above, but big-endian byte order *}
AUDIO_U16 = AUDIO_U16LSB;
AUDIO_S16 = AUDIO_S16LSB;
{**
* int32 support
*}
const
AUDIO_S32LSB = $8020; {**< 32-bit integer samples *}
AUDIO_S32MSB = $9020; {**< As above, but big-endian byte order *}
AUDIO_S32 = AUDIO_S32LSB;
{**
* float32 support
*}
const
AUDIO_F32LSB = $8120; {**< 32-bit floating point samples *}
AUDIO_F32MSB = $9120; {**< As above, but big-endian byte order *}
AUDIO_F32 = AUDIO_F32LSB;
{**
* Native audio byte ordering
*}
{$IFDEF FPC}
{$IF DEFINED(ENDIAN_LITTLE)}
AUDIO_U16SYS = AUDIO_U16LSB;
AUDIO_S16SYS = AUDIO_S16LSB;
AUDIO_S32SYS = AUDIO_S32LSB;
AUDIO_F32SYS = AUDIO_F32LSB;
{$ELSEIF DEFINED(ENDIAN_BIG)}
AUDIO_U16SYS = AUDIO_U16MSB;
AUDIO_S16SYS = AUDIO_S16MSB;
AUDIO_S32SYS = AUDIO_S32MSB;
AUDIO_F32SYS = AUDIO_F32MSB;
{$ELSE}
{$FATAL Cannot determine endianness.}
{$IFEND}
{$ENDIF}
{**
* Allow change flags
*
* Which audio format changes are allowed when opening a device.
*}
const
SDL_AUDIO_ALLOW_FREQUENCY_CHANGE = $00000001;
SDL_AUDIO_ALLOW_FORMAT_CHANGE = $00000002;
SDL_AUDIO_ALLOW_CHANNELS_CHANGE = $00000004;
SDL_AUDIO_ALLOW_ANY_CHANGE = (SDL_AUDIO_ALLOW_FREQUENCY_CHANGE or
SDL_AUDIO_ALLOW_FORMAT_CHANGE or
SDL_AUDIO_ALLOW_CHANNELS_CHANGE);
{*Audio flags*}
{**
* This function is called when the audio device needs more data.
*
* userdata An application-specific parameter saved in
* the SDL_AudioSpec structure
* stream A pointer to the audio data buffer.
* len The length of that buffer in bytes.
*
* Once the callback returns, the buffer will no longer be valid.
* Stereo samples are stored in a LRLRLR ordering.
*}
type
TSDL_AudioCallback = procedure(userdata: Pointer; stream: PUInt8; len: Integer) cdecl;
{**
* The calculated values in this structure are calculated by SDL_OpenAudio().
*}
type
PSDL_AudioSpec = ^TSDL_AudioSpec;
TSDL_AudioSpec = record
freq: Integer; {**< DSP frequency -- samples per second *}
format: TSDL_AudioFormat; {**< Audio data format *}
channels: UInt8; {**< Number of channels: 1 mono, 2 stereo *}
silence: UInt8; {**< Audio buffer silence value (calculated) *}
samples: UInt16; {**< Audio buffer size in samples (power of 2) *}
padding: UInt16; {**< Necessary for some compile environments *}
size: UInt32; {**< Audio buffer size in bytes (calculated) *}
callback: TSDL_AudioCallback;
userdata: Pointer;
end;
PSDL_AudioCVT = ^TSDL_AudioCVT;
TSDL_AudioFilter = procedure(cvt: PSDL_AudioCVT; format: TSDL_AudioFormat) cdecl;
{**
* A structure to hold a set of audio conversion filters and buffers.
*}
TSDL_AudioCVT = record
needed: Integer; {**< Set to 1 if conversion possible *}
src_format: TSDL_AudioFormat; {**< Source audio format *}
dst_format: TSDL_AudioFormat; {**< Target audio format *}
rate_incr: Double; {**< Rate conversion increment *}
buf: PUInt8; {**< Buffer to hold entire audio data *}
len: Integer; {**< Length of original audio buffer *}
len_cvt: Integer; {**< Length of converted audio buffer *}
len_mult: Integer; {**< buffer must be len*len_mult big *}
len_ratio: Double; {**< Given len, final size is len*len_ratio *}
filters: array[0..9] of TSDL_AudioFilter; {**< Filter list *}
filter_index: Integer; {**< Current audio conversion function *}
end;
{* Function prototypes *}
{**
* Driver discovery functions
*
* These functions return the list of built in audio drivers, in the
* order that they are normally initialized by default.
*}
function SDL_GetNumAudioDrivers: Integer cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_GetNumAudioDrivers' {$ENDIF} {$ENDIF};
function SDL_GetAudioDriver(index: Integer): PAnsiChar cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_GetAudioDriver' {$ENDIF} {$ENDIF};
{**
* Initialization and cleanup
*
* These functions are used internally, and should not be used unless
* you have a specific need to specify the audio driver you want to
* use. You should normally use SDL_Init() or SDL_InitSubSystem().
*}
function SDL_AudioInit(driver_name: PAnsiChar): Integer cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_AudioInit' {$ENDIF} {$ENDIF};
procedure SDL_AudioQuit cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_AudioQuit' {$ENDIF} {$ENDIF};
{**
* This function returns the name of the current audio driver, or NULL
* if no driver has been initialized.
*}
function SDL_GetCurrentAudioDriver: PAnsiChar cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_GetCurrentAudioDriver' {$ENDIF} {$ENDIF};
{**
* This function opens the audio device with the desired parameters, and
* returns 0 if successful, placing the actual hardware parameters in the
* structure pointed to by obtained. If obtained is NULL, the audio
* data passed to the callback function will be guaranteed to be in the
* requested format, and will be automatically converted to the hardware
* audio format if necessary. This function returns -1 if it failed
* to open the audio device, or couldn't set up the audio thread.
*
* When filling in the desired audio spec structure,
* - desired->freq should be the desired audio frequency in samples-per-
* second.
* - desired->format should be the desired audio format.
* - desired->samples is the desired size of the audio buffer, in
* samples. This number should be a power of two, and may be adjusted by
* the audio driver to a value more suitable for the hardware. Good values
* seem to range between 512 and 8096 inclusive, depending on the
* application and CPU speed. Smaller values yield faster response time,
* but can lead to underflow if the application is doing heavy processing
* and cannot fill the audio buffer in time. A stereo sample consists of
* both right and left channels in LR ordering.
* Note that the number of samples is directly related to time by the
* following formula: ms := (samples*1000)/freq;
* - desired->size is the size in bytes of the audio buffer, and is
* calculated by SDL_OpenAudio().
* - desired->silence is the value used to set the buffer to silence,
* and is calculated by SDL_OpenAudio().
* - desired->callback should be set to a function that will be called
* when the audio device is ready for more data. It is passed a pointer
* to the audio buffer, and the length in bytes of the audio buffer.
* This function usually runs in a separate thread, and so you should
* protect data structures that it accesses by calling SDL_LockAudio()
* and SDL_UnlockAudio() in your code.
* - desired->userdata is passed as the first parameter to your callback
* function.
*
* The audio device starts out playing silence when it's opened, and should
* be enabled for playing by calling SDL_PauseAudio(0) when you are ready
* for your audio callback function to be called. Since the audio driver
* may modify the requested size of the audio buffer, you should allocate
* any local mixing buffers after you open the audio device.
*}
function SDL_OpenAudio(desired: PSDL_AudioSpec; obtained: PSDL_AudioSpec): Integer cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_OpenAudio' {$ENDIF} {$ENDIF};
{**
* SDL Audio Device IDs.
*
* A successful call to SDL_OpenAudio() is always device id 1, and legacy
* SDL audio APIs assume you want this device ID. SDL_OpenAudioDevice() calls
* always returns devices >= 2 on success. The legacy calls are good both
* for backwards compatibility and when you don't care about multiple,
* specific, or capture devices.
*}
type
TSDL_AudioDeviceID = UInt32;
{**
* Get the number of available devices exposed by the current driver.
* Only valid after a successfully initializing the audio subsystem.
* Returns -1 if an explicit list of devices can't be determined; this is
* not an error. For example, if SDL is set up to talk to a remote audio
* server, it can't list every one available on the Internet, but it will
* still allow a specific host to be specified to SDL_OpenAudioDevice().
*
* In many common cases, when this function returns a value <= 0, it can still
* successfully open the default device (NULL for first argument of
* SDL_OpenAudioDevice()).
*}
function SDL_GetNumAudioDevices(iscapture: Integer): Integer cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_GetNumAudioDevices' {$ENDIF} {$ENDIF};
{**
* Get the human-readable name of a specific audio device.
* Must be a value between 0 and (number of audio devices-1).
* Only valid after a successfully initializing the audio subsystem.
* The values returned by this function reflect the latest call to
* SDL_GetNumAudioDevices(); recall that function to redetect available
* hardware.
*
* The string returned by this function is UTF-8 encoded, read-only, and
* managed internally. You are not to free it. If you need to keep the
* string for any length of time, you should make your own copy of it, as it
* will be invalid next time any of several other SDL functions is called.
*}
function SDL_GetAudioDeviceName(index: Integer; iscapture: Integer): PAnsiChar cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_GetAudioDeviceName' {$ENDIF} {$ENDIF};
{**
* Open a specific audio device. Passing in a device name of NULL requests
* the most reasonable default (and is equivalent to calling SDL_OpenAudio()).
*
* The device name is a UTF-8 string reported by SDL_GetAudioDeviceName(), but
* some drivers allow arbitrary and driver-specific strings, such as a
* hostname/IP address for a remote audio server, or a filename in the
* diskaudio driver.
*
* 0 on error, a valid device ID that is >= 2 on success.
*
* SDL_OpenAudio(), unlike this function, always acts on device ID 1.
*}
function SDL_OpenAudioDevice(device: PAnsiChar;
iscapture: Integer;
desired: PSDL_AudioSpec;
obtained: PSDL_AudioSpec;
allowed_changes: Integer): TSDL_AudioDeviceID cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_OpenAudioDevice' {$ENDIF} {$ENDIF};
{**
* Audio state
*
* Get the current audio state.
*}
type
TSDL_AudioStatus = (SDL_AUDIO_STOPPED,SDL_AUDIO_PLAYING,SDL_AUDIO_PAUSED);
function SDL_GetAudioStatus: TSDL_AudioStatus cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_GetAudioStatus' {$ENDIF} {$ENDIF};
function SDL_GetAudioDeviceStatus(dev: TSDL_AudioDeviceID): TSDL_AudioStatus cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_GetAudioDeviceStatus' {$ENDIF} {$ENDIF};
{*Audio State*}
{**
* Pause audio functions
*
* These functions pause and unpause the audio callback processing.
* They should be called with a parameter of 0 after opening the audio
* device to start playing sound. This is so you can safely initialize
* data for your callback function after opening the audio device.
* Silence will be written to the audio device during the pause.
*}
procedure SDL_PauseAudio(pause_on: Integer) cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_PauseAudio' {$ENDIF} {$ENDIF};
procedure SDL_PauseAudioDevice(dev: TSDL_AudioDeviceID; pause_on: Integer) cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_PauseAudioDevice' {$ENDIF} {$ENDIF};
{*Pause audio functions*}
{**
* This function loads a WAVE from the data source, automatically freeing
* that source if freesrc is non-zero. For example, to load a WAVE file,
* you could do:
*
* SDL_LoadWAV_RW(SDL_RWFromFile("sample.wav", "rb"), 1, ...);
*
*
* If this function succeeds, it returns the given SDL_AudioSpec,
* filled with the audio data format of the wave data, and sets
* *audio_buf to a malloc()'d buffer containing the audio data,
* and sets *audio_len to the length of that audio buffer, in bytes.
* You need to free the audio buffer with SDL_FreeWAV() when you are
* done with it.
*
* This function returns NULL and sets the SDL error message if the
* wave file cannot be opened, uses an unknown data format, or is
* corrupt. Currently raw and MS-ADPCM WAVE files are supported.
*}
function SDL_LoadWAV_RW(src: PSDL_RWops; freesrc: Integer; spec: PSDL_AudioSpec; audio_buf: PPUInt8; audio_len: PUInt32): PSDL_AudioSpec cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_LoadWAV_RW' {$ENDIF} {$ENDIF};
{**
* Loads a WAV from a file.
* Compatibility convenience function.
*}
function SDL_LoadWAV(_file: PAnsiChar; spec: PSDL_AudioSpec; audio_buf: PPUInt8; audio_len: PUInt32): PSDL_AudioSpec;
{**
* This function frees data previously allocated with SDL_LoadWAV_RW()
*}
procedure SDL_FreeWAV(audio_buf: PUInt8) cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_FreeWAV' {$ENDIF} {$ENDIF};
{**
* This function takes a source format and rate and a destination format
* and rate, and initializes the cvt structure with information needed
* by SDL_ConvertAudio() to convert a buffer of audio data from one format
* to the other.
*
* -1 if the format conversion is not supported, 0 if there's
* no conversion needed, or 1 if the audio filter is set up.
*}
function SDL_BuildAudioCVT(cvt: PSDL_AudioCVT;
src_format: TSDL_AudioFormat;
src_channels: UInt8;
src_rate: Integer;
dst_format: TSDL_AudioFormat;
dst_channels: UInt8;
dst_rate: Integer): Integer cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_BuildAudioCVT' {$ENDIF} {$ENDIF};
{**
* Once you have initialized the cvt structure using SDL_BuildAudioCVT(),
* created an audio buffer cvt->buf, and filled it with cvt->len bytes of
* audio data in the source format, this function will convert it in-place
* to the desired format.
*
* The data conversion may expand the size of the audio data, so the buffer
* cvt->buf should be allocated after the cvt structure is initialized by
* SDL_BuildAudioCVT(), and should be cvt->len*cvt->len_mult bytes long.
*}
function SDL_ConvertAudio(cvt: PSDL_AudioCVT): Integer cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_ConvertAudio' {$ENDIF} {$ENDIF};
const
SDL_MIX_MAXVOLUME = 128;
{**
* This takes two audio buffers of the playing audio format and mixes
* them, performing addition, volume adjustment, and overflow clipping.
* The volume ranges from 0 - 128, and should be set to ::SDL_MIX_MAXVOLUME
* for full audio volume. Note this does not change hardware volume.
* This is provided for convenience -- you can mix your own audio data.
*}
procedure SDL_MixAudio(dst: PUInt8; src: PUInt8; len: UInt32; volume: Integer) cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_MixAudio' {$ENDIF} {$ENDIF};
{**
* This works like SDL_MixAudio(), but you specify the audio format instead of
* using the format of audio device 1. Thus it can be used when no audio
* device is open at all.
*}
procedure SDL_MixAudioFormat(dst: PUInt8; src: PUInt8; format: TSDL_AudioFormat; len: UInt32; volume: Integer) cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_MixAudioFormat' {$ENDIF} {$ENDIF};
{**
* Queue more audio on non-callback devices.
*
* SDL offers two ways to feed audio to the device: you can either supply a
* callback that SDL triggers with some frequency to obtain more audio
* (pull method), or you can supply no callback, and then SDL will expect
* you to supply data at regular intervals (push method) with this function.
*
* There are no limits on the amount of data you can queue, short of
* exhaustion of address space. Queued data will drain to the device as
* necessary without further intervention from you. If the device needs
* audio but there is not enough queued, it will play silence to make up
* the difference. This means you will have skips in your audio playback
* if you aren't routinely queueing sufficient data.
*
* This function copies the supplied data, so you are safe to free it when
* the function returns. This function is thread-safe, but queueing to the
* same device from two threads at once does not promise which buffer will
* be queued first.
*
* You may not queue audio on a device that is using an application-supplied
* callback; doing so returns an error. You have to use the audio callback
* or queue audio with this function, but not both.
*
* You should not call SDL_LockAudio() on the device before queueing; SDL
* handles locking internally for this function.
*
* \param dev The device ID to which we will queue audio.
* \param data The data to queue to the device for later playback.
* \param len The number of bytes (not samples!) to which (data) points.
* \return zero on success, -1 on error.
*
* \sa SDL_GetQueuedAudioSize
* \sa SDL_ClearQueuedAudio
*}
function SDL_QueueAudio(dev: TSDL_AudioDeviceID; data: Pointer; len: UInt32): SInt32; cdecl;
external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_QueueAudio' {$ENDIF} {$ENDIF};
{**
* Dequeue more audio on non-callback devices.
*
* (If you are looking to queue audio for output on a non-callback playback
* device, you want SDL_QueueAudio() instead. This will always return 0
* if you use it with playback devices.)
*
* SDL offers two ways to retrieve audio from a capture device: you can
* either supply a callback that SDL triggers with some frequency as the
* device records more audio data, (push method), or you can supply no
* callback, and then SDL will expect you to retrieve data at regular
* intervals (pull method) with this function.
*
* There are no limits on the amount of data you can queue, short of
* exhaustion of address space. Data from the device will keep queuing as
* necessary without further intervention from you. This means you will
* eventually run out of memory if you aren't routinely dequeueing data.
*
* Capture devices will not queue data when paused; if you are expecting
* to not need captured audio for some length of time, use
* SDL_PauseAudioDevice() to stop the capture device from queueing more
* data. This can be useful during, say, level loading times. When
* unpaused, capture devices will start queueing data from that point,
* having flushed any capturable data available while paused.
*
* This function is thread-safe, but dequeueing from the same device from
* two threads at once does not promise which thread will dequeued data
* first.
*
* You may not dequeue audio from a device that is using an
* application-supplied callback; doing so returns an error. You have to use
* the audio callback, or dequeue audio with this function, but not both.
*
* You should not call SDL_LockAudio() on the device before queueing; SDL
* handles locking internally for this function.
*
* \param dev The device ID from which we will dequeue audio.
* \param data A pointer into where audio data should be copied.
* \param len The number of bytes (not samples!) to which (data) points.
* \return number of bytes dequeued, which could be less than requested.
*
* \sa SDL_GetQueuedAudioSize
* \sa SDL_ClearQueuedAudio
*}
function SDL_DequeueAudio(dev: TSDL_AudioDeviceID; data: Pointer; len:Uint32):Uint32; cdecl;
external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_DequeueAudio' {$ENDIF} {$ENDIF};
{**
* Get the number of bytes of still-queued audio.
*
* This is the number of bytes that have been queued for playback with
* SDL_QueueAudio(), but have not yet been sent to the hardware.
*
* Once we've sent it to the hardware, this function can not decide the exact
* byte boundary of what has been played. It's possible that we just gave the
* hardware several kilobytes right before you called this function, but it
* hasn't played any of it yet, or maybe half of it, etc.
*
* You may not queue audio on a device that is using an application-supplied
* callback; calling this function on such a device always returns 0.
* You have to use the audio callback or queue audio with SDL_QueueAudio(),
* but not both.
*
* You should not call SDL_LockAudio() on the device before querying; SDL
* handles locking internally for this function.
*
* \param dev The device ID of which we will query queued audio size.
* \return Number of bytes (not samples!) of queued audio.
*
* \sa SDL_QueueAudio
* \sa SDL_ClearQueuedAudio
*}
function SDL_GetQueuedAudioSize(dev: TSDL_AudioDeviceID): UInt32; cdecl;
external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_GetQueuedAudioSize' {$ENDIF} {$ENDIF};
{**
* Drop any queued audio data waiting to be sent to the hardware.
*
* Immediately after this call, SDL_GetQueuedAudioSize() will return 0 and
* the hardware will start playing silence if more audio isn't queued.
*
* This will not prevent playback of queued audio that's already been sent
* to the hardware, as we can not undo that, so expect there to be some
* fraction of a second of audio that might still be heard. This can be
* useful if you want to, say, drop any pending music during a level change
* in your game.
*
* You may not queue audio on a device that is using an application-supplied
* callback; calling this function on such a device is always a no-op.
* You have to use the audio callback or queue audio with SDL_QueueAudio(),
* but not both.
*
* You should not call SDL_LockAudio() on the device before clearing the
* queue; SDL handles locking internally for this function.
*
* This function always succeeds and thus returns void.
*
* \param dev The device ID of which to clear the audio queue.
*
* \sa SDL_QueueAudio
* \sa SDL_GetQueuedAudioSize
*}
procedure SDL_ClearQueuedAudio(dev: TSDL_AudioDeviceID); cdecl;
external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_ClearQueuedAudio' {$ENDIF} {$ENDIF};
{**
* Audio lock functions
*
* The lock manipulated by these functions protects the callback function.
* During a SDL_LockAudio()/SDL_UnlockAudio() pair, you can be guaranteed that
* the callback function is not running. Do not call these from the callback
* function or you will cause deadlock.
*}
procedure SDL_LockAudio cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_LockAudio' {$ENDIF} {$ENDIF};
procedure SDL_LockAudioDevice(dev: TSDL_AudioDeviceID) cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_LockAudioDevice' {$ENDIF} {$ENDIF};
procedure SDL_UnlockAudio cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_Unlock' {$ENDIF} {$ENDIF};
procedure SDL_UnlockAudioDevice(dev: TSDL_AudioDeviceID) cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_UnlockAudioDevice' {$ENDIF} {$ENDIF};
{*Audio lock functions*}
{**
* This function shuts down audio processing and closes the audio device.
*}
procedure SDL_CloseAudio cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_CloseAudio' {$ENDIF} {$ENDIF};
procedure SDL_CloseAudioDevice(dev: TSDL_AudioDeviceID) cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_CloseAudioDevice' {$ENDIF} {$ENDIF};
{**
* 1 if audio device is still functioning, zero if not, -1 on error.
*}
function SDL_AudioDeviceConnected(dev: TSDL_AudioDeviceID): Integer cdecl; external SDL_LibName {$IFDEF DELPHI} {$IFDEF MACOS} name '_SDL_AudioDeviceConnected' {$ENDIF} {$ENDIF};