-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrun_dataset_4_train.m
40 lines (30 loc) · 1.06 KB
/
run_dataset_4_train.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
function run_dataset_4_train()
% Create a ANN/regression and train/fit it with the assembled simulation data.
%
% Load the simulation data.
% Train/fit the ANN/regression with the data.
% Obtain, display, and plot the dataset and error metrics.
%
% This function requires a running ANN Python Server (if this regression method is used).
%
% (c) 2019-2020, ETH Zurich, Power Electronic Systems Laboratory, T. Guillod
init_toolbox();
% run the thermal model
run_sub('ht');
% run the magnetic model
run_sub('mf');
end
function run_sub(model_type)
% Make the ANN/regression for a specified physics.
%
% Parameters:
% model_type (str): name of the physics to be solved
% path of the file with the assembled data
file_assemble = ['dataset/' model_type '_assemble.mat'];
% path of the file to be written with the ANN/regression data
file_ann = ['dataset/' model_type '_ann.mat'];
% get the ANN/regression parameters
ann_input = get_dataset_param_train(model_type, 'matlab_ann');
% make the ANN/regression
master_train(file_ann, file_assemble, ann_input)
end