-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkalman_filter.py
78 lines (66 loc) · 2.47 KB
/
kalman_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
class KalmanFilter:
"""
A class for implementing a Kalman Filter.
Attributes:
F (numpy.ndarray): The state-transition model matrix.
H (numpy.ndarray): The observation model matrix.
Q (numpy.ndarray): The covariance matrix for the process noise.
R (numpy.ndarray): The covariance matrix for the observation noise.
x (numpy.ndarray): The current state estimate.
P (numpy.ndarray): The current state covariance matrix.
Example usage:
# Initialize the system matrices
F = np.array([[1, 1], [0, 1]])
H = np.array([[1, 0]])
Q = np.array([[0.1, 0], [0, 0.1]])
R = np.array([[0.5]])
x0 = np.array([0, 0])
P0 = np.array([[1, 0], [0, 1]])
# Create a Kalman Filter object
kf = KalmanFilter(F, H, Q, R, x0, P0)
# Simulate measurements and update the filter
measurements = [0.5, 1.0, 1.5, 2.0, 2.5]
for z in measurements:
kf.predict()
kf.update(np.array([z]))
print("State estimate:", kf.x)
"""
def __init__(self, F, H, Q, R, x0, P0):
"""
Initializes the KalmanFilter class with initial values.
Args:
F (numpy.ndarray): The state-transition model matrix.
H (numpy.ndarray): The observation model matrix.
Q (numpy.ndarray): The covariance matrix for the process noise.
R (numpy.ndarray): The covariance matrix for the observation noise.
x0 (numpy.ndarray): The initial state estimate.
P0 (numpy.ndarray): The initial state covariance matrix.
"""
self.F = F
self.H = H
self.Q = Q
self.R = R
self.x = x0
self.P = P0
def predict(self):
"""
Predicts the next state and updates the state covariance matrix.
Returns:
numpy.ndarray: The predicted state.
"""
self.x = self.F @ self.x
self.P = self.F @ self.P @ self.F.T + self.Q
return self.x
def update(self, z):
"""
Updates the state estimate and state covariance matrix
based on the given observation.
Args:
z (numpy.ndarray): The observation vector.
"""
y = z - self.H @ self.x
S = self.H @ self.P @ self.H.T + self.R
K = self.P @ self.H.T @ np.linalg.inv(S)
self.x = self.x + K @ y
self.P = (np.identity(self.P.shape[0]) - K @ self.H) @ self.P