-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
147 lines (95 loc) · 3.67 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import re
import sympy as sym
from keras.models import model_from_json
import numpy as np
import cv2
from segmentation import segment_image, segment_lines
def show_image(img):
cv2.imshow("preview", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def load_model():
with open("Models/solver_model.json", 'r') as json_file:
solver_model = model_from_json(json_file.read())
solver_model.load_weights("Models/solver_model_weights.h5")
return solver_model
def extract(img):
solver_model = load_model()
segmented_symbols = segment_image(img)
classes = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '-', '*', '=', 'x', 'y']
expression = ""
for i in range(len(segmented_symbols)):
segmented_symbols[i] = np.array(segmented_symbols[i]).astype('float32')
segmented_symbols[i] = segmented_symbols[i].reshape((1, 28, 28, 1))/255
result = solver_model.predict(segmented_symbols[i]).argmax()
expression += classes[result]
return expression
def extract_linear_equations(img):
lines = segment_lines(img)
equations = ""
for line in lines:
equations += extract(line) + '\n'
return equations[:-1]
def solve_expression(expression):
solution = str(eval(expression))
return solution
def solve_linear_equation(equation):
equation = re.sub(r"(\d)(x)", r"\1*\2", equation)
equation = re.sub(r"(x)(\d)", r"\1**\2", equation)
expression, value = equation.split('=')
equation_string = expression + '=' + value
expression = sym.sympify(expression)
equation = sym.Eq(expression, int(value))
roots = sym.solve(equation)
solution = ""
for root in roots:
solution += "x = " + str(root).replace("I", "i") + ",\n"
return equation_string, solution[:-2]
def solve_linear_system(equations):
equations = equations.split("\n")
x, y = sym.symbols('x y')
system = []
for equation in equations:
equation = re.sub(r"(\d)(x)", r"\1*\2", equation)
equation = re.sub(r"(\d)(y)", r"\1*\2", equation)
expression, value = equation.split('=')
expression = sym.sympify(expression)
equation = sym.Eq(expression, int(value))
system.append(equation)
solutions = sym.linsolve(system, x, y)
if solutions:
solution = f"x = {solutions.args[0][0]},\ny = {solutions.args[0][1]}"
return solution
else:
return "No Solution"
def differentiate(equation):
x = sym.symbols('x')
equation = re.sub(r"(\d)(x)", r"\1*\2", equation)
equation = re.sub(r"(x)(\d)", r"\1**\2", equation)
equation = sym.sympify(equation)
solution = str(sym.diff(equation, x))
return solution
def indefinite_integral(equation):
equation = equation[1:-2]
x = sym.symbols('x')
equation = re.sub(r"(\d)(x)", r"\1*\2", equation)
equation = re.sub(r"(x)(\d)", r"\1**\2", equation)
equation = sym.sympify(equation)
solution = str(sym.integrate(equation, x))
return solution + " + C"
def definite_integral(equation):
lower = equation[0]
upper = equation[2]
equation = equation[3:-2]
x = sym.symbols('x')
equation = re.sub(r"(\d)(x)", r"\1*\2", equation)
equation = re.sub(r"(x)(\d)", r"\1**\2", equation)
equation = sym.sympify(equation)
solution = str(sym.integrate(equation, (x, lower, upper)))
return solution
if __name__ == '__main__':
image = cv2.imread("")
show_image(image)
eq = extract(image)
sol = definite_integral(eq)
print(f"Expression: {eq}\n Solution: {sol}")