-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathresults_to_csv.py
212 lines (187 loc) · 6.36 KB
/
results_to_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Usage: python results_to_csv.py results_folder_path
Make sure the final directory results_folder_path is the name of your model
"""
import csv
import json
import os
import sys
from mteb import MTEB
TASK_LIST_CLASSIFICATION = [
"AmazonCounterfactualClassification",
"AmazonPolarityClassification",
"AmazonReviewsClassification",
"Banking77Classification",
"EmotionClassification",
"ImdbClassification",
"MassiveIntentClassification",
"MassiveScenarioClassification",
"MTOPDomainClassification",
"MTOPIntentClassification",
"ToxicConversationsClassification",
"TweetSentimentExtractionClassification",
]
TASK_LIST_CLUSTERING = [
"ArxivClusteringP2P",
"ArxivClusteringS2S",
"BiorxivClusteringP2P",
"BiorxivClusteringS2S",
"MedrxivClusteringP2P",
"MedrxivClusteringS2S",
"RedditClustering",
"RedditClusteringP2P",
"StackExchangeClustering",
"StackExchangeClusteringP2P",
"TwentyNewsgroupsClustering",
]
TASK_LIST_PAIR_CLASSIFICATION = [
"SprintDuplicateQuestions",
"TwitterSemEval2015",
"TwitterURLCorpus",
]
TASK_LIST_RERANKING = [
"AskUbuntuDupQuestions",
"MindSmallReranking",
"SciDocsRR",
"StackOverflowDupQuestions",
]
TASK_LIST_RETRIEVAL = [
"ArguAna",
"ClimateFEVER",
"CQADupstackRetrieval",
"DBPedia",
"FEVER",
"FiQA2018",
"HotpotQA",
"MSMARCO",
"NFCorpus",
"NQ",
"QuoraRetrieval",
"SCIDOCS",
"SciFact",
"Touche2020",
"TRECCOVID",
]
TASK_LIST_STS = [
"BIOSSES",
"SICK-R",
"STS12",
"STS13",
"STS14",
"STS15",
"STS16",
"STS17",
"STS22",
"STSBenchmark",
]
TASK_LIST_SUMMARIZATION = [
"SummEval",
]
TASK_LIST_BITEXT = [
"BUCC",
"Tatoeba",
]
TASK_LIST = (
TASK_LIST_BITEXT
+ TASK_LIST_CLASSIFICATION
+ TASK_LIST_CLUSTERING
+ TASK_LIST_PAIR_CLASSIFICATION
+ TASK_LIST_RERANKING
+ TASK_LIST_RETRIEVAL
+ TASK_LIST_STS
+ TASK_LIST_SUMMARIZATION
)
TASK_LIST_NAMES = [
("Classification", TASK_LIST_CLASSIFICATION, ["en", "en-en"]),
("Clustering", TASK_LIST_CLUSTERING, ["en", "en-en"]),
("PairClassification", TASK_LIST_PAIR_CLASSIFICATION, ["en", "en-en"]),
("Reranking", TASK_LIST_RERANKING, ["en", "en-en"]),
("Retrieval", TASK_LIST_RETRIEVAL, ["en", "en-en"]),
("STS", TASK_LIST_STS, ["en", "en-en"]),
("all", TASK_LIST, ["en", "en-en"]),
("BitextMining", TASK_LIST_BITEXT, []),
]
results_folder = sys.argv[1]
results_folder = results_folder.strip("/")
model_name = results_folder.split("/")[-1]
print(f"Using model name {model_name}")
all_results = {}
for file_name in os.listdir(results_folder):
if not file_name.endswith(".json"):
print(f"Skipping non-json {file_name}")
continue
with open(os.path.join(results_folder, file_name), "r", encoding="utf-8") as f:
results = json.load(f)
all_results = {**all_results, **{file_name.replace(".json", ""): results}}
csv_file = f"{results_folder}_results.csv"
print(f"Converting {results_folder} to {csv_file}")
NOT_FOUND = []
def get_rows(task, dataset, limit_langs=[]):
rows = []
# CQADupstackRetrieval uses the same metric as its subsets
tasks = MTEB(tasks=[dataset.replace("CQADupstackRetrieval", "CQADupstackTexRetrieval")]).tasks
assert len(tasks) == 1, f"Found {len(tasks)} for {dataset}. Expected 1."
main_metric = tasks[0].description["main_score"]
test_result = all_results.get(dataset, {})
# Dev / Val set is used for MSMARCO (See BEIR paper)
if "MSMARCO" in dataset:
test_result = (
test_result.get("dev") if "dev" in test_result else test_result.get("validation")
)
else:
test_result = test_result.get("test")
if test_result is None:
print(f"{dataset} - test set not found")
NOT_FOUND.append(dataset)
return [[model_name, task, dataset, "", main_metric, ""]]
for lang in tasks[0].description["eval_langs"]:
if limit_langs and lang not in limit_langs:
continue
test_result_lang = test_result.get(lang, test_result)
if main_metric == "cosine_spearman":
test_result_lang = test_result_lang.get("cos_sim", {}).get("spearman")
elif main_metric == "ap":
test_result_lang = test_result_lang.get("cos_sim", {}).get("ap")
else:
test_result_lang = test_result_lang.get(main_metric)
if test_result_lang is None:
print(f"{lang} & {main_metric} not found for task {dataset}.")
rows.append([model_name, task, dataset, lang, main_metric, ""])
rows.append([model_name, task, dataset, lang, main_metric, test_result_lang])
return rows
with open(csv_file, "w", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(["model", "task", "dataset", "language", "metric", "value"])
for task, dataset_list in [
("BitextMining", TASK_LIST_BITEXT),
("Classification", TASK_LIST_CLASSIFICATION),
("Clustering", TASK_LIST_CLUSTERING),
("PairClassification", TASK_LIST_PAIR_CLASSIFICATION),
("Reranking", TASK_LIST_RERANKING),
("Retrieval", TASK_LIST_RETRIEVAL),
("STS", TASK_LIST_STS),
("Summarization", TASK_LIST_SUMMARIZATION),
]:
for dataset in dataset_list:
writer.writerows(get_rows(task, dataset))
# Add average scores
for task, dataset_list, limit_langs in [
("BitextMining", TASK_LIST_BITEXT, []),
("Classification", TASK_LIST_CLASSIFICATION, ["en", "en-en"]),
("Clustering", TASK_LIST_CLUSTERING, ["en", "en-en"]),
("PairClassification", TASK_LIST_PAIR_CLASSIFICATION, ["en", "en-en"]),
("Reranking", TASK_LIST_RERANKING, ["en", "en-en"]),
("Retrieval", TASK_LIST_RETRIEVAL, ["en", "en-en"]),
("STS", TASK_LIST_STS, ["en", "en-en"]),
("all", TASK_LIST, ["en", "en-en"]),
]:
if all([x in all_results for x in dataset_list]):
rows = [y for x in dataset_list for y in get_rows(task, x, limit_langs=limit_langs)]
try:
avg = sum([float(x[-1]) for x in rows]) / len(rows)
except:
continue
metric = "multiple" if task == "all" else rows[-1][-2]
writer.writerow([model_name, task, "average", "en", metric, avg])
if NOT_FOUND:
print("Not found: " + "'" + "','".join(NOT_FOUND) + "'", len(NOT_FOUND))