-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
396 lines (348 loc) · 15.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# Copyright 2020 Mickael Chen, Edouard Delasalles, Jean-Yves Franceschi, Patrick Gallinari, Sylvain Lamprier
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import torch
import sys
import numpy as np
import torch.backends.cudnn as cudnn
import torch.distributions as distrib
import torch.nn.functional as F
from contextlib import nullcontext
from torch.utils.data import DataLoader
from tqdm import tqdm
import args
import helper
import data.base as data
import module.srvp as srvp
import module.utils as utils
# Mixed-precision training packages
torch_amp_imported = True
try:
from torch.cuda import amp as torch_amp
except ImportError:
torch_amp_imported = False
apex_amp_imported = True
try:
from apex import amp as apex_amp
except ImportError:
apex_amp_imported = False
def train(forward_fn, optimizer, scaler, batch, device, opt):
"""
Performs an optimization step.
Parameters
----------
forward_fn : function
Forward method of the model.
optimizer : torch.optim.Optimizer
PyTorch optimizer of the model.
scaler : torch.cuda.amp.GradScaler
Gradient scaler for PyTorch's mixed-precision training. Is None if this setting is disabled.
batch : torch.*.Tensor
Tensor containing the bach of the optimization step with shape (length, batch, channels, width, height) and
float values lying in [0, 1].
device : torch.device
Device on which operations are performed.
opt : helper.DotDict
Contains the training configuration.
Returns
-------
float
Batch-averaged loss of the performed iteration.
float
Batch-averaged negative log likelihood component of the loss of the performed iteration.
float
Batch-averaged KL divergence component for the initial condition y_0 of the loss of the performed iteration.
float
Batch-averaged KL divergence component for variables z of the loss of the performed iteration.
"""
# Zero gradients
optimizer.zero_grad()
# Data
x = batch.to(device)
nt, n = x.shape[0], x.shape[1]
# Forward (inference)
x_, y, z, _, q_y_0_params, q_z_params, p_z_params, res = forward_fn(x, nt, dt=1 / opt.n_euler_steps)
# Loss
# NLL
nll = utils.neg_logprob(x_, x, scale=opt.obs_scale).sum()
# y_0 KL
q_y_0 = utils.make_normal_from_raw_params(q_y_0_params)
kl_y_0 = distrib.kl_divergence(q_y_0, distrib.Normal(0, 1)).sum()
# z KL
q_z, p_z = utils.make_normal_from_raw_params(q_z_params), utils.make_normal_from_raw_params(p_z_params)
kl_z = distrib.kl_divergence(q_z, p_z).sum()
# ELBO
loss = nll + opt.beta_y * kl_y_0 + opt.beta_z * kl_z
# L2 regularization of residuals
if opt.l2_res > 0:
l2_res = torch.norm(res, p=2, dim=2).sum()
loss += opt.l2_res * l2_res
# Batch average
loss /= n
# Backward and weight update
if opt.torch_amp:
with torch_amp.autocast(enabled=False):
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
if opt.apex_amp:
with apex_amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
# Logs
with torch.no_grad():
loss = loss.item()
nll = nll.sum().item() / n
kl_y_0 = kl_y_0.item() / n
kl_z = kl_z.item() / n
return loss, nll, kl_y_0, kl_z
def evaluate(forward_fn, val_loader, device, opt):
"""
Evaluates the model on a validation dataset on a number of validation batches.
Parameters
----------
forward_fn : function
Forward method of the model, which must be in evaluation mode.
val_loader : torch.utils.data.DataLoader
Randomized dataloader for a data.base.VideoDataset dataset.
device : torch.device
Device on which operations are performed.
opt : helper.DotDict
Contains the training configuration.
Returns
-------
float
Average negative prediction PSNR.
"""
inf_len = opt.nt_cond
assert val_loader is not None and opt.n_iter_test <= len(val_loader)
n = 0 # Total number of evaluation videos, updated in the validation loop
global_psnr = 0 # Sum of all computed prediction PSNR
with torch.no_grad():
for j, batch in enumerate(val_loader):
# Stop when the given number of iterations is reached
if j >= opt.n_iter_test:
break
# Data
x = batch.to(device)
x_inf = x[:inf_len]
nt = x.shape[0]
n_b = x.shape[1]
n += n_b
# Perform a given number of predictions per video
all_x = []
for _ in range(opt.n_samples_test):
all_x.append(forward_fn(x_inf, nt, dt=1 / opt.n_euler_steps)[0].cpu())
all_x = torch.stack(all_x)
# Sort predictions with respect to PSNR and select the closest one to the ground truth
x_cpu = x.cpu()
all_mse = torch.mean(F.mse_loss(all_x, x_cpu.expand_as(all_x), reduction='none'), dim=[4, 5])
all_psnr = torch.mean(10 * torch.log10(1 / all_mse), dim=[1, 3])
_, idx_best = all_psnr.max(0)
x_ = all_x[idx_best, :, torch.arange(n_b).to(device)].transpose(0, 1).contiguous().to(device)
# Compute the final PSNR score
mse = torch.mean(F.mse_loss(x_, x, reduction='none'), dim=[3, 4])
psnr = 10 * torch.log10(1 / mse)
global_psnr += psnr[inf_len:].mean().item() * n_b
# Average by batch
return -global_psnr / n
def main(opt):
"""
Trains SRVP and saved the resulting model.
Parameters
----------
opt : helper.DotDict
Contains the training configuration.
"""
##################################################################################################################
# Setup
##################################################################################################################
# Device handling (CPU, GPU, multi GPU)
if opt.device is None:
device = torch.device('cpu')
opt.n_gpu = 0
else:
opt.n_gpu = len(opt.device)
os.environ['CUDA_VISIBLE_DEVICES'] = str(opt.device[opt.local_rank])
device = torch.device('cuda:0')
torch.cuda.set_device(0)
# In the case of multi GPU: sets up distributed training
if opt.n_gpu > 1 or opt.local_rank > 0:
torch.distributed.init_process_group(backend='nccl')
assert opt.seed is not None
# Since we are in distributed mode, divide batch size by the number of GPUs
assert opt.batch_size % opt.n_gpu == 0
opt.batch_size = opt.batch_size // opt.n_gpu
# Seed
if opt.seed is None:
opt.seed = random.randint(1, 10000)
else:
assert isinstance(opt.seed, int) and opt.seed > 0
print(f'Learning on {opt.n_gpu} GPU(s) (seed: {opt.seed})')
random.seed(opt.seed)
np.random.seed(opt.seed + opt.local_rank)
torch.manual_seed(opt.seed)
# cuDNN
if opt.n_gpu > 1 or opt.local_rank > 0:
assert torch.backends.cudnn.enabled
cudnn.deterministic = True
# Mixed-precision training
if opt.torch_amp and not torch_amp_imported:
raise ImportError('Mixed-precision not supported by this PyTorch version, upgrade PyTorch or use Apex')
if opt.apex_amp and not apex_amp_imported:
raise ImportError('Apex not installed (https://github.com/NVIDIA/apex)')
##################################################################################################################
# Data
##################################################################################################################
print('Loading data...')
# Load data
dataset = data.load_dataset(opt, True)
trainset = dataset.get_fold('train')
valset = dataset.get_fold('val')
# Change validation sequence length, if specified
if opt.seq_len_test is not None:
valset.change_seq_len(opt.seq_len_test)
# Handle random seed for dataloader workers
def worker_init_fn(worker_id):
np.random.seed((opt.seed + itr + opt.local_rank * opt.n_workers + worker_id) % (2**32 - 1))
# Dataloader
sampler = None
shuffle = True
if opt.n_gpu > 1:
# Let the distributed sampler shuffle for the distributed case
sampler = torch.utils.data.distributed.DistributedSampler(trainset)
shuffle = False
train_loader = DataLoader(trainset, batch_size=opt.batch_size, collate_fn=data.collate_fn, sampler=sampler,
num_workers=opt.n_workers, shuffle=shuffle, drop_last=True, pin_memory=True,
worker_init_fn=worker_init_fn)
val_loader = DataLoader(valset, batch_size=opt.batch_size_test, collate_fn=data.collate_fn,
num_workers=opt.n_workers, shuffle=True, drop_last=True, pin_memory=True,
worker_init_fn=worker_init_fn) if opt.local_rank == 0 else None
##################################################################################################################
# Model
##################################################################################################################
# Buid model
print('Building model...')
model = srvp.StochasticLatentResidualVideoPredictor(opt.nx, opt.nc, opt.nf, opt.nhx, opt.ny, opt.nz, opt.skipco,
opt.nt_inf, opt.nh_inf, opt.nlayers_inf, opt.nh_res,
opt.nlayers_res, opt.archi)
model.init(res_gain=opt.res_gain)
# Make the batch norms in the model synchronized in the distributed case
if opt.n_gpu > 1:
if opt.apex_amp:
from apex.parallel import convert_syncbn_model
model = convert_syncbn_model(model)
else:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.to(device)
##################################################################################################################
# Optimizer
##################################################################################################################
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
opt.n_iter = opt.lr_scheduling_burnin + opt.lr_scheduling_n_iter
lr_sch_n_iter = opt.lr_scheduling_n_iter
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
lr_lambda=lambda i: max(0, (lr_sch_n_iter - i) / lr_sch_n_iter))
##################################################################################################################
# Automatic Mixed Precision
##################################################################################################################
scaler = None
if opt.torch_amp:
scaler = torch_amp.GradScaler()
if opt.apex_amp:
model, optimizer = apex_amp.initialize(model, optimizer, opt_level=opt.amp_opt_lvl,
keep_batchnorm_fp32=opt.keep_batchnorm_fp32,
verbosity=opt.apex_verbose)
##################################################################################################################
# Multi GPU
##################################################################################################################
if opt.n_gpu > 1:
if opt.apex_amp:
from apex.parallel import DistributedDataParallel
forward_fn = DistributedDataParallel(model)
else:
forward_fn = torch.nn.parallel.DistributedDataParallel(model)
else:
forward_fn = model
##################################################################################################################
# Training
##################################################################################################################
cudnn.benchmark = True # Activate benchmarks to select the fastest algorithms
assert opt.n_iter > 0
itr = 0
finished = False
# Progress bar
if opt.local_rank == 0:
pb = tqdm(total=opt.n_iter, ncols=0)
# Current and best model evaluation metric (lower is better)
val_metric = None
best_val_metric = None
try:
while not finished:
if sampler is not None:
sampler.set_epoch(opt.seed + itr)
# -------- TRAIN --------
for batch in train_loader:
# Stop when the given number of optimization steps have been done
if itr >= opt.n_iter:
finished = True
status_code = 0
break
itr += 1
model.train()
# Optimization step on batch
# Allow PyTorch's mixed-precision computations if required while ensuring retrocompatibilty
with (torch_amp.autocast() if opt.torch_amp else nullcontext()):
loss, nll, kl_y_0, kl_z = train(forward_fn, optimizer, scaler, batch, device, opt)
# Learning rate scheduling
if itr >= opt.lr_scheduling_burnin:
lr_scheduler.step()
# Evaluation and model saving are performed on the process with local rank zero
if opt.local_rank == 0:
# Evaluation
if itr % opt.val_interval == 0:
model.eval()
val_metric = evaluate(forward_fn, val_loader, device, opt)
if best_val_metric is None or best_val_metric > val_metric:
best_val_metric = val_metric
torch.save(model.state_dict(), os.path.join(opt.save_path, 'model_best.pt'))
# Checkpointing
if opt.chkpt_interval is not None and itr % opt.chkpt_interval == 0:
torch.save(model.state_dict(), os.path.join(opt.save_path, f'model_{itr}.pt'))
# Progress bar
if opt.local_rank == 0:
pb.set_postfix({'loss': loss, 'nll': nll, 'kl_y_0': kl_y_0, 'kl_z': kl_z, 'val_metric': val_metric,
'best_val_metric': best_val_metric}, refresh=False)
pb.update()
except KeyboardInterrupt:
status_code = 130
if opt.local_rank == 0:
pb.close()
# Save model
print('Saving...')
if opt.local_rank == 0:
torch.save(model.state_dict(), os.path.join(opt.save_path, 'model.pt'))
print('Done')
return status_code
if __name__ == '__main__':
# Arguments
p = args.create_args()
# Parse arguments
opt = helper.DotDict(vars(p.parse_args()))
# Disable output for all processes but the first one
if opt.local_rank != 0:
sys.stdout = open(os.devnull, "w")
# Main
main(opt)