forked from microsoft/Quantum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPermutationOracle.cs
222 lines (196 loc) · 8.96 KB
/
PermutationOracle.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Runtime.InteropServices;
using Microsoft.Quantum.Simulation;
using Microsoft.Quantum.Simulation.Core;
using Microsoft.Quantum.Simulation.Simulators;
namespace Microsoft.Quantum.Extensions.Oracles
{
/// <summary>
/// This class provides the infrastructure to define and efficiently
/// apply permutation oracles within a (full state) simulator.
/// </summary>
public class OracleEmulator
{
/// <summary>
/// The main entry point for emulation of a permutation oracle: Apply
/// the permutation defined by the oracle function
/// f: (x, y) -> (x, f(x, y)).
/// </summary>
public static void ApplyOracle(QuantumSimulator simulator, Func<Int64, Int64, Int64> oracle,
IQArray<Qubit> xbits, IQArray<Qubit> ybits, bool adjoint = false)
{
var permutation = BuildPermutationTable(oracle, (int)xbits.Length, (int)ybits.Length);
ApplyOracle(simulator, permutation, xbits, ybits, adjoint);
}
/// <summary>
/// Apply a permutation defined by a permutation table. This overload
/// allows for performance optimizations like reuse of permutation
/// tables.
/// </summary>
public static void ApplyOracle(QuantumSimulator simulator, Int64[] permutation,
IQArray<Qubit> xbits, IQArray<Qubit> ybits, bool adjoint = false)
{
simulator.CheckQubits(xbits, "x");
simulator.CheckQubits(ybits, "y");
Debug.Assert(CheckPermutation(permutation));
var qbits = QArray<Qubit>.Add(xbits, ybits).GetIds();
if (adjoint)
AdjPermuteBasisTable(simulator.Id, (uint)qbits.Length, qbits, permutation.LongLength, permutation);
else
PermuteBasisTable(simulator.Id, (uint)qbits.Length, qbits, permutation.LongLength, permutation);
}
/// <summary>
/// Build a permutation table for nx- and ny-qubit registers from a
/// permutation function.
/// </summary>
public static Int64[] BuildPermutationTable(Func<Int64, Int64, Int64> oracle, int nx, int ny)
{
Int64 xmask = (1L << nx) - 1L;
Int64 ymask = ((1L << ny) - 1L) << nx;
Int64 table_size = 1L << (nx + ny);
var permutation = new Int64[table_size];
for (Int64 state = 0; state < table_size; ++state)
{
Int64 x = state & xmask;
Int64 y = (state & ymask) >> nx;
Int64 z = oracle(x, y);
Int64 result = x | (z << nx);
permutation[state] = result;
}
return permutation;
}
/// <summary>
/// Check whether the given permutation table is actually bijective,
/// i.e. a valid permutation.
/// </summary>
public static bool CheckPermutation(Int64[] permutation)
{
var mapped = new BitArray(permutation.Length);
for (int i = 0; i < permutation.Length; ++i)
{
var j = (int)permutation[i];
Debug.Assert(j >= 0 && j < permutation.Length);
mapped[j] = true;
}
for (int i = 0; i < permutation.Length; ++i)
{
if (!mapped[i])
return false;
}
return true;
}
// Entry points to the simulator backend
[DllImport(QuantumSimulator.QSIM_DLL_NAME, ExactSpelling = true, CallingConvention = CallingConvention.Cdecl, EntryPoint = "PermuteBasis")]
private static extern void PermuteBasisTable(uint id, uint num_qbits, [In] uint[] qbits, long table_size, [In] long[] permutation_table);
[DllImport(QuantumSimulator.QSIM_DLL_NAME, ExactSpelling = true, CallingConvention = CallingConvention.Cdecl, EntryPoint = "AdjPermuteBasis")]
private static extern void AdjPermuteBasisTable(uint id, uint num_qbits, [In] uint[] qbits, long table_size, [In] long[] permutation_table);
}
/// <summary>
/// Extension of the PermutationOracle operation defined in
/// PermutationOracle.qs with an emulated version.
/// </summary>
public partial class PermutationOracle
{
/// <summary>
/// Native emulation of permutation oracles when run on a full state
/// simulator. Directly permutes the basis state amplitudes in the wave
/// function of the simulator, rather than computing and applying a
/// sequence of gates with the same effect.
/// </summary>
public class Native : PermutationOracle
{
private QuantumSimulator Simulator { get; }
public Native(QuantumSimulator m) : base(m)
{
this.Simulator = m;
}
/// <summary>
/// Overrides the body to do the emulation.
/// </summary>
public override Func<(ICallable, IQArray<Qubit>, IQArray<Qubit>), QVoid> Body => (_args) =>
{
var (oracle, xbits, ybits) = _args;
OracleEmulator.ApplyOracle(this.Simulator, (x, y) => oracle.Apply<Int64>((x, y)), xbits, ybits, adjoint: false);
return QVoid.Instance;
};
/// <summary>
/// Overrides the adjoint body to do the emulation.
/// </summary>
public override Func<(ICallable, IQArray<Qubit>, IQArray<Qubit>), QVoid> AdjointBody => (_args) =>
{
var (oracle, xbits, ybits) = _args;
OracleEmulator.ApplyOracle(this.Simulator, (x, y) => oracle.Apply<Int64>((x, y)), xbits, ybits, adjoint: true);
return QVoid.Instance;
};
}
}
/// <summary>
/// Factory class facilitating the creation of emulated permutation oracles
/// from C# code.
/// </summary>
public class EmulatedOracleFactory
{
/// <summary>
/// Create an oracle Operation that applies a permutation to the basis
/// states of two registers.
/// </summary>
public static Adjointable<(IQArray<Qubit>, IQArray<Qubit>)> Create(QuantumSimulator simulator, Func<Int64, Int64, Int64> permutation)
{
return new PermutationOracleImpl<ICallable>(simulator, permutation);
}
/// <summary>
/// Register a permutation oracle as the implementation of the
/// operation "Op", which is typically a Q# declaration of the form
/// operation MyOracle(xbits : Qubit[], ybits : Qubit[]) : Unit
/// {
/// body intrinsic;
/// adjoint intrinsic;
/// }
/// </summary>
public static void Register<Op>(QuantumSimulator simulator, Func<Int64, Int64, Int64> permutation)
{
PermutationOracleImpl<Op>.RegisterPermutation(permutation);
simulator.Register(typeof(Op), typeof(PermutationOracleImpl<Op>), typeof(ICallable));
}
// Infrastructure to allow for programmatic definition and registration of new oracles.
private class PermutationOracleImpl<Op> : Adjointable<(IQArray<Qubit>, IQArray<Qubit>)>, ICallable
{
private static Dictionary<Type, Func<Int64, Int64, Int64>> registered_permutations = new Dictionary<Type, Func<Int64, Int64, Int64>>();
public static void RegisterPermutation(Func<Int64, Int64, Int64> permutation)
{
registered_permutations[typeof(Op)] = permutation;
}
private QuantumSimulator Simulator { get; }
private Func<Int64, Int64, Int64> Permutation { get; }
public PermutationOracleImpl(QuantumSimulator m) : base(m)
{
this.Simulator = m;
this.Permutation = registered_permutations[typeof(Op)]; ;
}
public PermutationOracleImpl(QuantumSimulator m, Func<Int64, Int64, Int64> permutation) : base(m)
{
this.Simulator = m;
this.Permutation = permutation;
}
string ICallable.FullName => $"PermutationOracleImpl<{typeof(Op)}>";
public override void Init() { }
public override Func<(IQArray<Qubit>, IQArray<Qubit>), QVoid> Body => (_args) =>
{
var (xbits, ybits) = _args;
OracleEmulator.ApplyOracle(this.Simulator, this.Permutation, xbits, ybits, adjoint: false);
return QVoid.Instance;
};
public override Func<(IQArray<Qubit>, IQArray<Qubit>), QVoid> AdjointBody => (_args) =>
{
var (xbits, ybits) = _args;
OracleEmulator.ApplyOracle(this.Simulator, this.Permutation, xbits, ybits, adjoint: true);
return QVoid.Instance;
};
}
}
}