-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathpolynomial_regression.py
65 lines (58 loc) · 2.26 KB
/
polynomial_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Data Preprocessing Template
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Position_Salaries.csv')
#in dataset we dont need position as it is already coded in
#level
X = dataset.iloc[:, 1:2].values
#now we included 1:2 as we need x to be matrix not array
y = dataset.iloc[:, 2].values
# Splitting the dataset into the Training set and Test set
"""from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
"""
# Feature Scaling
"""from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
sc_y = StandardScaler()
y_train = sc_y.fit_transform(y_train)"""
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree=4)
#we change the degree for better fit of poly reg line
#the ooly will include col of one automatically feature of this lib
X_poly =poly_reg.fit_transform(X)
#ye make this new with X_poly
lin_reg_2=LinearRegression()
lin_reg_2.fit(X_poly, y)
# Visualising the Linear Regression results
plt.scatter(X, y, color = 'red')
plt.plot(X, lin_reg.predict(X), color = 'blue')
plt.title('Truth or Bluff (Linear Regression)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()
# Visualising the Polynomial Regression results
X_grid = np.arange(min(X), max(X), 0.1)
X_grid = X_grid.reshape((len(X_grid), 1))
#to have better prediction we resize the X
plt.scatter(X, y, color = 'red')
#here we dont use X_poly as we want to include every new matrix
plt.plot(X_grid, lin_reg_2.predict(poly_reg.fit_transform(X_grid)), color = 'blue')
plt.title('Truth or Bluff (Polynomial Regression)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()
# Predicting a new result with Linear Regression
#here we get salary of 6.5 years of experinence
print("Simple linear regression:", lin_reg.predict([[6.5]]))
# Predicting a new result with Polynomial Regression
print("Polynomial linear regression:", lin_reg_2.predict(poly_reg.fit_transform([[6.5]])))