-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcryptonets
184 lines (177 loc) · 8.65 KB
/
cryptonets
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
Dataset: breastmnist
Model Information:
conv1: In channel = 1; Out Channel = 5; Windows = 5
; Padding = 1; Stride = 2
pool1: Window = 3; Padding = 1; Stride = 1
conv2: In channel = 5; Out Channel = 50; Windows = 5
; Padding = 0; Stride = 2
pool2: Window = 3; Padding = 1; Stride = 1
linear1: In Channel = 1250; Out Channel = 100
linear2: In Channel = 100; Out Channel = 2
[1/1], Acc = 48.7179%
Total Inference Images : 156
Total Acc : 48.7179%
Total Convolution Operation Time Consume : 1138.78(s)
Average Convolution Operation Time Consume : 7.29985(s)
Total Pooling Operation Time Consume : 17.8493(s)
Average Pooling Operation Time Consume : 0.114419(s)
Total Square Activation Operation Time Consume : 38.19(s)
Average Square Activation Operation Time Consume : 0.244808(s)
Total Linear Operation Time Consume : 581.057(s)
Average Square Activation Operation Time Consume : 3.72472(s)
Total Time Consume : 1804.74(s)
Average Time Consume Per Batch : 1804.74(s)
Average Time Consume Per Image : 11.5689(s)
Dataset: octmnist
Model Information:
conv1: In channel = 1; Out Channel = 5; Windows = 5
; Padding = 1; Stride = 2
pool1: Window = 3; Padding = 1; Stride = 1
conv2: In channel = 5; Out Channel = 50; Windows = 5
; Padding = 0; Stride = 2
pool2: Window = 3; Padding = 1; Stride = 1
linear1: In Channel = 1250; Out Channel = 100
linear2: In Channel = 100; Out Channel = 4
[1/1], Acc = 24.6%
Total Inference Images : 1000
Total Acc : 24.6%
Total Convolution Operation Time Consume : 1140.7(s)
Average Convolution Operation Time Consume : 1.1407(s)
Total Pooling Operation Time Consume : 25.9608(s)
Average Pooling Operation Time Consume : 0.0259608(s)
Total Square Activation Operation Time Consume : 41.9056(s)
Average Square Activation Operation Time Consume : 0.0419056(s)
Total Linear Operation Time Consume : 581.522(s)
Average Square Activation Operation Time Consume : 0.581522(s)
Total Time Consume : 1819.27(s)
Average Time Consume Per Batch : 1819.27(s)
Average Time Consume Per Image : 1.81927(s)
Dataset: organamnist
Model Information:
conv1: In channel = 1; Out Channel = 5; Windows = 5
; Padding = 1; Stride = 2
pool1: Window = 3; Padding = 1; Stride = 1
conv2: In channel = 5; Out Channel = 50; Windows = 5
; Padding = 0; Stride = 2
pool2: Window = 3; Padding = 1; Stride = 1
linear1: In Channel = 1250; Out Channel = 100
linear2: In Channel = 100; Out Channel = 11
[1/3], Acc = 4.01057%
[2/3], Acc = 7.90865%
[3/3], Acc = 8.61177%
Total Inference Images : 17778
Total Acc : 8.61177%
Total Convolution Operation Time Consume : 3413.51(s)
Average Convolution Operation Time Consume : 0.192007(s)
Total Pooling Operation Time Consume : 62.5671(s)
Average Pooling Operation Time Consume : 0.00351935(s)
Total Square Activation Operation Time Consume : 115.932(s)
Average Square Activation Operation Time Consume : 0.00652107(s)
Total Linear Operation Time Consume : 1750.47(s)
Average Square Activation Operation Time Consume : 0.098463(s)
Total Time Consume : 5431.08(s)
Average Time Consume Per Batch : 1810.36(s)
Average Time Consume Per Image : 0.305494(s)
Dataset: organcmnist
Model Information:
conv1: In channel = 1; Out Channel = 5; Windows = 5
; Padding = 1; Stride = 2
pool1: Window = 3; Padding = 1; Stride = 1
conv2: In channel = 5; Out Channel = 50; Windows = 5
; Padding = 0; Stride = 2
pool2: Window = 3; Padding = 1; Stride = 1
linear1: In Channel = 1250; Out Channel = 100
linear2: In Channel = 100; Out Channel = 11
[1/2], Acc = 5.33382%
[2/2], Acc = 5.35801%
Total Inference Images : 8268
Total Acc : 5.35801%
Total Convolution Operation Time Consume : 2286.49(s)
Average Convolution Operation Time Consume : 0.276547(s)
Total Pooling Operation Time Consume : 44.0877(s)
Average Pooling Operation Time Consume : 0.00533233(s)
Total Square Activation Operation Time Consume : 78.3034(s)
Average Square Activation Operation Time Consume : 0.00947065(s)
Total Linear Operation Time Consume : 1171.89(s)
Average Square Activation Operation Time Consume : 0.141738(s)
Total Time Consume : 3639.26(s)
Average Time Consume Per Batch : 1819.63(s)
Average Time Consume Per Image : 0.440162(s)
Dataset: organsmnist
Model Information:
conv1: In channel = 1; Out Channel = 5; Windows = 5
; Padding = 1; Stride = 2
pool1: Window = 3; Padding = 1; Stride = 1
conv2: In channel = 5; Out Channel = 50; Windows = 5
; Padding = 0; Stride = 2
pool2: Window = 3; Padding = 1; Stride = 1
linear1: In Channel = 1250; Out Channel = 100
linear2: In Channel = 100; Out Channel = 11
[1/2], Acc = 4.5192%
[2/2], Acc = 4.87031%
Total Inference Images : 8829
Total Acc : 4.87031%
Total Convolution Operation Time Consume : 2273.94(s)
Average Convolution Operation Time Consume : 0.257554(s)
Total Pooling Operation Time Consume : 42.1682(s)
Average Pooling Operation Time Consume : 0.0047761(s)
Total Square Activation Operation Time Consume : 79.1847(s)
Average Square Activation Operation Time Consume : 0.00896871(s)
Total Linear Operation Time Consume : 1178.26(s)
Average Square Activation Operation Time Consume : 0.133453(s)
Total Time Consume : 3634.99(s)
Average Time Consume Per Batch : 1817.49(s)
Average Time Consume Per Image : 0.41171(s)
Dataset: pneumoniamnist
Model Information:
conv1: In channel = 1; Out Channel = 5; Windows = 5
; Padding = 1; Stride = 2
pool1: Window = 3; Padding = 1; Stride = 1
conv2: In channel = 5; Out Channel = 50; Windows = 5
; Padding = 0; Stride = 2
pool2: Window = 3; Padding = 1; Stride = 1
linear1: In Channel = 1250; Out Channel = 100
linear2: In Channel = 100; Out Channel = 2
[1/1], Acc = 62.5%
Total Inference Images : 624
Total Acc : 62.5%
Total Convolution Operation Time Consume : 1136.31(s)
Average Convolution Operation Time Consume : 1.82102(s)
Total Pooling Operation Time Consume : 26.2339(s)
Average Pooling Operation Time Consume : 0.0420414(s)
Total Square Activation Operation Time Consume : 41.3273(s)
Average Square Activation Operation Time Consume : 0.0662296(s)
Total Linear Operation Time Consume : 581.64(s)
Average Square Activation Operation Time Consume : 0.932115(s)
Total Time Consume : 1814.12(s)
Average Time Consume Per Batch : 1814.12(s)
Average Time Consume Per Image : 2.90725(s)
Dataset: tissuemnist
Model Information:
conv1: In channel = 1; Out Channel = 5; Windows = 5
; Padding = 1; Stride = 2
pool1: Window = 3; Padding = 1; Stride = 1
conv2: In channel = 5; Out Channel = 50; Windows = 5
; Padding = 0; Stride = 2
pool2: Window = 3; Padding = 1; Stride = 1
linear1: In Channel = 1250; Out Channel = 100
linear2: In Channel = 100; Out Channel = 8
[1/6], Acc = 4.37183%
[2/6], Acc = 8.65482%
[3/6], Acc = 12.9569%
[4/6], Acc = 17.2229%
[5/6], Acc = 21.5144%
[6/6], Acc = 24.8541%
Total Inference Images : 47280
Total Acc : 24.8541%
Total Convolution Operation Time Consume : 6812.61(s)
Average Convolution Operation Time Consume : 0.144091(s)
Total Pooling Operation Time Consume : 114.226(s)
Average Pooling Operation Time Consume : 0.00241595(s)
Total Square Activation Operation Time Consume : 228.244(s)
Average Square Activation Operation Time Consume : 0.0048275(s)
Total Linear Operation Time Consume : 3487.81(s)
Average Square Activation Operation Time Consume : 0.0737691(s)
Total Time Consume : 10820.9(s)
Average Time Consume Per Batch : 1803.48(s)
Average Time Consume Per Image : 0.228869(s)