-
Notifications
You must be signed in to change notification settings - Fork 3k
/
tensorNet.h
827 lines (705 loc) · 27.2 KB
/
tensorNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __TENSOR_NET_H__
#define __TENSOR_NET_H__
// forward declaration of IInt8Calibrator
namespace nvinfer1 { class IInt8Calibrator; }
// includes
#include <NvInfer.h>
#include <jetson-utils/cudaUtility.h>
#include <jetson-utils/commandLine.h>
#include <jetson-utils/imageFormat.h>
#include <jetson-utils/timespec.h>
#include <jetson-utils/logging.h>
#include <vector>
#include <sstream>
#include <math.h>
#if NV_TENSORRT_MAJOR >= 6
typedef nvinfer1::Dims3 Dims3;
#define DIMS_C(x) x.d[0]
#define DIMS_H(x) x.d[1]
#define DIMS_W(x) x.d[2]
#elif NV_TENSORRT_MAJOR >= 2
typedef nvinfer1::DimsCHW Dims3;
#define DIMS_C(x) x.d[0]
#define DIMS_H(x) x.d[1]
#define DIMS_W(x) x.d[2]
#else
typedef nvinfer1::Dims3 Dims3;
#define DIMS_C(x) x.c
#define DIMS_H(x) x.h
#define DIMS_W(x) x.w
#ifndef NV_TENSORRT_MAJOR
#define NV_TENSORRT_MAJOR 1
#define NV_TENSORRT_MINOR 0
#endif
#endif
#if NV_TENSORRT_MAJOR >= 8
#define NOEXCEPT noexcept
#else
#define NOEXCEPT
#endif
/**
* Macro for checking the minimum version of TensorRT that is installed.
* This evaluates to true if TensorRT is newer or equal to the provided version.
* @ingroup tensorNet
*/
#define TENSORRT_VERSION_CHECK(major, minor, patch) (NV_TENSORRT_MAJOR > major || (NV_TENSORRT_MAJOR == major && NV_TENSORRT_MINOR > minor) || (NV_TENSORRT_MAJOR == major && NV_TENSORRT_MINOR == minor && NV_TENSORRT_PATCH >= patch))
/**
* Default maximum batch size
* @ingroup tensorNet
*/
#define DEFAULT_MAX_BATCH_SIZE 1
/**
* Prefix used for tagging printed log output from TensorRT.
* @ingroup tensorNet
*/
#define LOG_TRT "[TRT] "
/**
* Enumeration for indicating the desired precision that
* the network should run in, if available in hardware.
* @ingroup tensorNet
*/
enum precisionType
{
TYPE_DISABLED = 0, /**< Unknown, unspecified, or disabled type */
TYPE_FASTEST, /**< The fastest detected precision should be use (i.e. try INT8, then FP16, then FP32) */
TYPE_FP32, /**< 32-bit floating-point precision (FP32) */
TYPE_FP16, /**< 16-bit floating-point half precision (FP16) */
TYPE_INT8, /**< 8-bit integer precision (INT8) */
NUM_PRECISIONS /**< Number of precision types defined */
};
/**
* Stringize function that returns precisionType in text.
* @ingroup tensorNet
*/
const char* precisionTypeToStr( precisionType type );
/**
* Parse the precision type from a string.
* @ingroup tensorNet
*/
precisionType precisionTypeFromStr( const char* str );
/**
* Enumeration for indicating the desired device that
* the network should run on, if available in hardware.
* @ingroup tensorNet
*/
enum deviceType
{
DEVICE_GPU = 0, /**< GPU (if multiple GPUs are present, a specific GPU can be selected with cudaSetDevice() */
DEVICE_DLA, /**< Deep Learning Accelerator (DLA) Core 0 (only on Jetson Xavier) */
DEVICE_DLA_0 = DEVICE_DLA, /**< Deep Learning Accelerator (DLA) Core 0 (only on Jetson Xavier) */
DEVICE_DLA_1, /**< Deep Learning Accelerator (DLA) Core 1 (only on Jetson Xavier) */
NUM_DEVICES /**< Number of device types defined */
};
/**
* Stringize function that returns deviceType in text.
* @ingroup tensorNet
*/
const char* deviceTypeToStr( deviceType type );
/**
* Parse the device type from a string.
* @ingroup tensorNet
*/
deviceType deviceTypeFromStr( const char* str );
/**
* Enumeration indicating the format of the model that's
* imported in TensorRT (either caffe, ONNX, or UFF).
* @ingroup tensorNet
*/
enum modelType
{
MODEL_CUSTOM = 0, /**< Created directly with TensorRT API */
MODEL_CAFFE, /**< caffemodel */
MODEL_ONNX, /**< ONNX */
MODEL_UFF, /**< UFF */
MODEL_ENGINE /**< TensorRT engine/plan */
};
/**
* Stringize function that returns modelType in text.
* @ingroup tensorNet
*/
const char* modelTypeToStr( modelType type );
/**
* Parse the model format from a string.
* @ingroup tensorNet
*/
modelType modelTypeFromStr( const char* str );
/**
* Parse the model format from a file path.
* @ingroup tensorNet
*/
modelType modelTypeFromPath( const char* path );
/**
* Profiling queries
* @see tensorNet::GetProfilerTime()
* @ingroup tensorNet
*/
enum profilerQuery
{
PROFILER_PREPROCESS = 0,
PROFILER_NETWORK,
PROFILER_POSTPROCESS,
PROFILER_VISUALIZE,
PROFILER_TOTAL,
};
/**
* Stringize function that returns profilerQuery in text.
* @ingroup tensorNet
*/
const char* profilerQueryToStr( profilerQuery query );
/**
* Profiler device
* @ingroup tensorNet
*/
enum profilerDevice
{
PROFILER_CPU = 0, /**< CPU walltime */
PROFILER_CUDA, /**< CUDA kernel time */
};
/**
* Abstract class for loading a tensor network with TensorRT.
* For example implementations, @see imageNet and @see detectNet
* @ingroup tensorNet
*/
class tensorNet
{
public:
/**
* Destory
*/
virtual ~tensorNet();
/**
* Load a new network instance
* @param prototxt File path to the deployable network prototxt
* @param model File path to the caffemodel
* @param mean File path to the mean value binary proto (NULL if none)
* @param input_blob The name of the input blob data to the network.
* @param output_blob The name of the output blob data from the network.
* @param maxBatchSize The maximum batch size that the network will be optimized for.
*/
bool LoadNetwork( const char* prototxt, const char* model, const char* mean=NULL,
const char* input_blob="data", const char* output_blob="prob",
uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true,
nvinfer1::IInt8Calibrator* calibrator=NULL, cudaStream_t stream=NULL );
/**
* Load a new network instance with multiple output layers
* @param prototxt File path to the deployable network prototxt
* @param model File path to the caffemodel
* @param mean File path to the mean value binary proto (NULL if none)
* @param input_blob The name of the input blob data to the network.
* @param output_blobs List of names of the output blobs from the network.
* @param maxBatchSize The maximum batch size that the network will be optimized for.
*/
bool LoadNetwork( const char* prototxt, const char* model, const char* mean,
const char* input_blob, const std::vector<std::string>& output_blobs,
uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true,
nvinfer1::IInt8Calibrator* calibrator=NULL, cudaStream_t stream=NULL );
/**
* Load a new network instance with multiple input layers.
* @param prototxt File path to the deployable network prototxt
* @param model File path to the caffemodel
* @param mean File path to the mean value binary proto (NULL if none)
* @param input_blobs List of names of the inputs blob data to the network.
* @param output_blobs List of names of the output blobs from the network.
* @param maxBatchSize The maximum batch size that the network will be optimized for.
*/
bool LoadNetwork( const char* prototxt, const char* model, const char* mean,
const std::vector<std::string>& input_blobs,
const std::vector<std::string>& output_blobs,
uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE,
precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true,
nvinfer1::IInt8Calibrator* calibrator=NULL, cudaStream_t stream=NULL );
/**
* Load a new network instance (this variant is used for UFF models)
* @param prototxt File path to the deployable network prototxt
* @param model File path to the caffemodel
* @param mean File path to the mean value binary proto (NULL if none)
* @param input_blob The name of the input blob data to the network.
* @param input_dims The dimensions of the input blob (used for UFF).
* @param output_blobs List of names of the output blobs from the network.
* @param maxBatchSize The maximum batch size that the network will be optimized for.
*/
bool LoadNetwork( const char* prototxt, const char* model, const char* mean,
const char* input_blob, const Dims3& input_dims,
const std::vector<std::string>& output_blobs,
uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE,
precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true,
nvinfer1::IInt8Calibrator* calibrator=NULL, cudaStream_t stream=NULL );
/**
* Load a new network instance with multiple input layers (used for UFF models)
* @param prototxt File path to the deployable network prototxt
* @param model File path to the caffemodel
* @param mean File path to the mean value binary proto (NULL if none)
* @param input_blobs List of names of the inputs blob data to the network.
* @param input_dims List of the dimensions of the input blobs (used for UFF).
* @param output_blobs List of names of the output blobs from the network.
* @param maxBatchSize The maximum batch size that the network will be optimized for.
*/
bool LoadNetwork( const char* prototxt, const char* model, const char* mean,
const std::vector<std::string>& input_blobs,
const std::vector<Dims3>& input_dims,
const std::vector<std::string>& output_blobs,
uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE,
precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true,
nvinfer1::IInt8Calibrator* calibrator=NULL, cudaStream_t stream=NULL );
/**
* Load a network instance from a serialized engine plan file.
* @param engine_filename path to the serialized engine plan file.
* @param input_blobs List of names of the inputs blob data to the network.
* @param output_blobs List of names of the output blobs from the network.
*/
bool LoadEngine( const char* engine_filename,
const std::vector<std::string>& input_blobs,
const std::vector<std::string>& output_blobs,
nvinfer1::IPluginFactory* pluginFactory=NULL,
deviceType device=DEVICE_GPU,
cudaStream_t stream=NULL );
/**
* Load a network instance from a serialized engine plan file.
* @param engine_stream Memory containing the serialized engine plan file.
* @param engine_size Size of the serialized engine stream (in bytes).
* @param input_blobs List of names of the inputs blob data to the network.
* @param output_blobs List of names of the output blobs from the network.
*/
bool LoadEngine( char* engine_stream, size_t engine_size,
const std::vector<std::string>& input_blobs,
const std::vector<std::string>& output_blobs,
nvinfer1::IPluginFactory* pluginFactory=NULL,
deviceType device=DEVICE_GPU,
cudaStream_t stream=NULL );
/**
* Load network resources from an existing TensorRT engine instance.
* @param engine_stream Memory containing the serialized engine plan file.
* @param engine_size Size of the serialized engine stream (in bytes).
* @param input_blobs List of names of the inputs blob data to the network.
* @param output_blobs List of names of the output blobs from the network.
*/
bool LoadEngine( nvinfer1::ICudaEngine* engine,
const std::vector<std::string>& input_blobs,
const std::vector<std::string>& output_blobs,
deviceType device=DEVICE_GPU,
cudaStream_t stream=NULL );
/**
* Load a serialized engine plan file into memory.
*/
bool LoadEngine( const char* filename, char** stream, size_t* size );
/**
* Load a binary file into memory.
*/
bool LoadBinary( const char* filename, char** stream, size_t* size );
/**
* Load class descriptions from a label file.
* Each line of the text file should include one class label (and optionally a synset).
* If the number of expected labels aren't parsed, they will be automatically generated.
*/
static bool LoadClassLabels( const char* filename, std::vector<std::string>& descriptions, int expectedClasses=-1 );
/**
* Load class descriptions and synset strings from a label file.
* Each line of the text file should include one class label (and optionally a synset).
* If the number of expected labels aren't parsed, they will be automatically generated.
*/
static bool LoadClassLabels( const char* filename, std::vector<std::string>& descriptions, std::vector<std::string>& synsets, int expectedClasses=-1 );
/**
* Load class colors from a text file. If the number of expected colors aren't parsed, they will be generated.
* The float4 color array should be `expectedClasses` long, and would typically be in shared CPU/GPU memory.
* If a line in the text file only has RGB, then the defaultAlpha value will be used for the alpha channel.
*/
static bool LoadClassColors( const char* filename, float4* colors, int expectedClasses, float defaultAlpha=255.0f );
/**
* Load class colors from a text file. If the number of expected colors aren't parsed, they will be generated.
* The float4 color array will automatically be allocated in shared CPU/GPU memory by `cudaAllocMapped()`.
* If a line in the text file only has RGB, then the defaultAlpha value will be used for the alpha channel.
*/
static bool LoadClassColors( const char* filename, float4** colors, int expectedClasses, float defaultAlpha=255.0f );
/**
* Procedurally generate a color for a given class index with the specified alpha value.
* This function can be used to generate a range of colors when a colors.txt file isn't available.
*/
static float4 GenerateColor( uint32_t classID, float alpha=255.0f );
/**
* Manually enable layer profiling times.
*/
void EnableLayerProfiler();
/**
* Manually enable debug messages and synchronization.
*/
void EnableDebug();
/**
* Return true if GPU fallback is enabled.
*/
inline bool AllowGPUFallback() const { return mAllowGPUFallback; }
/**
* Retrieve the device being used for execution.
*/
inline deviceType GetDevice() const { return mDevice; }
/**
* Retrieve the type of precision being used.
*/
inline precisionType GetPrecision() const { return mPrecision; }
/**
* Check if a particular precision is being used.
*/
inline bool IsPrecision( precisionType type ) const { return (mPrecision == type); }
/**
* Resolve a desired precision to a specific one that's available.
*/
static precisionType SelectPrecision( precisionType precision, deviceType device=DEVICE_GPU, bool allowInt8=true );
/**
* Determine the fastest native precision on a device.
*/
static precisionType FindFastestPrecision( deviceType device=DEVICE_GPU, bool allowInt8=true );
/**
* Detect the precisions supported natively on a device.
*/
static std::vector<precisionType> DetectNativePrecisions( deviceType device=DEVICE_GPU );
/**
* Detect if a particular precision is supported natively.
*/
static bool DetectNativePrecision( const std::vector<precisionType>& nativeTypes, precisionType type );
/**
* Detect if a particular precision is supported natively.
*/
static bool DetectNativePrecision( precisionType precision, deviceType device=DEVICE_GPU );
/**
* Retrieve the stream that the device is operating on.
*/
inline cudaStream_t GetStream() const { return mStream; }
/**
* Create and use a new stream for execution.
*/
cudaStream_t CreateStream( bool nonBlocking=true );
/**
* Set the stream that the device is operating on.
*/
void SetStream( cudaStream_t stream );
/**
* Retrieve the path to the network prototxt file.
*/
inline const char* GetPrototxtPath() const { return mPrototxtPath.c_str(); }
/**
* Retrieve the full path to model file, including the filename.
*/
inline const char* GetModelPath() const { return mModelPath.c_str(); }
/**
* Retrieve the filename of the file, excluding the directory.
*/
inline const char* GetModelFilename() const { return mModelFile.c_str(); }
/**
* Retrieve the format of the network model.
*/
inline modelType GetModelType() const { return mModelType; }
/**
* Return true if the model is of the specified format.
*/
inline bool IsModelType( modelType type ) const { return (mModelType == type); }
/**
* Retrieve the number of input layers to the network.
*/
inline uint32_t GetInputLayers() const { return mInputs.size(); }
/**
* Retrieve the number of output layers to the network.
*/
inline uint32_t GetOutputLayers() const { return mOutputs.size(); }
/**
* Retrieve the dimensions of network input layer.
*/
inline Dims3 GetInputDims( uint32_t layer=0 ) const { return mInputs[layer].dims; }
/**
* Retrieve the width of network input layer.
*/
inline uint32_t GetInputWidth( uint32_t layer=0 ) const { return DIMS_W(mInputs[layer].dims); }
/**
* Retrieve the height of network input layer.
*/
inline uint32_t GetInputHeight( uint32_t layer=0 ) const { return DIMS_H(mInputs[layer].dims); }
/**
* Retrieve the size (in bytes) of network input layer.
*/
inline uint32_t GetInputSize( uint32_t layer=0 ) const { return mInputs[layer].size; }
/**
* Get the CUDA pointer to the input layer's memory.
*/
inline float* GetInputPtr( uint32_t layer=0 ) const { return mInputs[layer].CUDA; }
/**
* Retrieve the dimensions of network output layer.
*/
inline Dims3 GetOutputDims( uint32_t layer=0 ) const { return mOutputs[layer].dims; }
/**
* Retrieve the width of network output layer.
*/
inline uint32_t GetOutputWidth( uint32_t layer=0 ) const { return DIMS_W(mOutputs[layer].dims); }
/**
* Retrieve the height of network output layer.
*/
inline uint32_t GetOutputHeight( uint32_t layer=0 ) const { return DIMS_H(mOutputs[layer].dims); }
/**
* Retrieve the size (in bytes) of network output layer.
*/
inline uint32_t GetOutputSize( uint32_t layer=0 ) const { return mOutputs[layer].size; }
/**
* Get the CUDA pointer to the output memory.
*/
inline float* GetOutputPtr( uint32_t layer=0 ) const { return mOutputs[layer].CUDA; }
/**
* Retrieve the network frames per second (FPS).
*/
inline float GetNetworkFPS() { return 1000.0f / GetNetworkTime(); }
/**
* Retrieve the network runtime (in milliseconds).
*/
inline float GetNetworkTime() { return GetProfilerTime(PROFILER_NETWORK, PROFILER_CUDA); }
/**
* Retrieve the network name (it's filename).
*/
inline const char* GetNetworkName() const { return mModelFile.c_str(); }
/**
* Retrieve the profiler runtime (in milliseconds).
*/
inline float2 GetProfilerTime( profilerQuery query ) { PROFILER_QUERY(query); return mProfilerTimes[query]; }
/**
* Retrieve the profiler runtime (in milliseconds).
*/
inline float GetProfilerTime( profilerQuery query, profilerDevice device ) { PROFILER_QUERY(query); return (device == PROFILER_CPU) ? mProfilerTimes[query].x : mProfilerTimes[query].y; }
/**
* Print the profiler times (in millseconds).
*/
inline void PrintProfilerTimes()
{
LogInfo("\n");
LogInfo(LOG_TRT "------------------------------------------------\n");
LogInfo(LOG_TRT "Timing Report %s\n", GetModelPath());
LogInfo(LOG_TRT "------------------------------------------------\n");
for( uint32_t n=0; n <= PROFILER_TOTAL; n++ )
{
const profilerQuery query = (profilerQuery)n;
if( PROFILER_QUERY(query) )
LogInfo(LOG_TRT "%-12s CPU %9.5fms CUDA %9.5fms\n", profilerQueryToStr(query), mProfilerTimes[n].x, mProfilerTimes[n].y);
}
LogInfo(LOG_TRT "------------------------------------------------\n\n");
static bool first_run=true;
if( first_run )
{
LogWarning(LOG_TRT "note -- when processing a single image, run 'sudo jetson_clocks' before\n"
" to disable DVFS for more accurate profiling/timing measurements\n\n");
first_run = false;
}
}
protected:
/**
* Constructor.
*/
tensorNet();
/**
* Execute processing of the network.
* @param sync if true (default), the device will be synchronized after processing
* and the thread/function will block until processing is complete.
* if false, the function will return immediately after the processing
* has been enqueued to the CUDA stream indicated by GetStream().
*/
bool ProcessNetwork( bool sync=true );
/**
* Create and output an optimized network model
* @note this function is automatically used by LoadNetwork, but also can
* be used individually to perform the network operations offline.
* @param deployFile name for network prototxt
* @param modelFile name for model
* @param outputs network outputs
* @param maxBatchSize maximum batch size
* @param modelStream output model stream
*/
bool ProfileModel( const std::string& deployFile, const std::string& modelFile,
const std::vector<std::string>& inputs, const std::vector<Dims3>& inputDims,
const std::vector<std::string>& outputs, uint32_t maxBatchSize,
precisionType precision, deviceType device, bool allowGPUFallback,
nvinfer1::IInt8Calibrator* calibrator, char** engineStream, size_t* engineSize );
/**
* Configure builder options
*/
#if NV_TENSORRT_MAJOR >= 8
bool ConfigureBuilder( nvinfer1::IBuilder* builder, nvinfer1::IBuilderConfig* config,
uint32_t maxBatchSize, uint32_t workspaceSize, precisionType precision,
deviceType device, bool allowGPUFallback,
nvinfer1::IInt8Calibrator* calibrator );
#else
bool ConfigureBuilder( nvinfer1::IBuilder* builder, uint32_t maxBatchSize,
uint32_t workspaceSize, precisionType precision,
deviceType device, bool allowGPUFallback,
nvinfer1::IInt8Calibrator* calibrator );
#endif
/**
* Validate that the model already has a built TensorRT engine that exists and doesn't need updating.
*/
bool ValidateEngine( const char* model_path, const char* cache_path, const char* checksum_path );
/**
* Logger class for GIE info/warning/errors
*/
class Logger : public nvinfer1::ILogger
{
public:
void log( Severity severity, const char* msg ) NOEXCEPT override
{
if( severity == Severity::kWARNING )
{
LogWarning(LOG_TRT "%s\n", msg);
}
else if( severity == Severity::kINFO )
{
LogInfo(LOG_TRT "%s\n", msg);
}
#if NV_TENSORRT_MAJOR >= 6
else if( severity == Severity::kVERBOSE )
{
LogVerbose(LOG_TRT "%s\n", msg);
}
#endif
else
{
LogError(LOG_TRT "%s\n", msg);
}
}
} static gLogger;
/**
* Profiler interface for measuring layer timings
*/
class Profiler : public nvinfer1::IProfiler
{
public:
Profiler() : timingAccumulator(0.0f) { }
virtual void reportLayerTime(const char* layerName, float ms) NOEXCEPT
{
LogVerbose(LOG_TRT "layer %s - %f ms\n", layerName, ms);
timingAccumulator += ms;
}
float timingAccumulator;
} gProfiler;
/**
* Begin a profiling query, before network is run
*/
inline void PROFILER_BEGIN( profilerQuery query )
{
const uint32_t evt = query*2;
const uint32_t flag = (1 << query);
CUDA(cudaEventRecord(mEventsGPU[evt], mStream));
timestamp(&mEventsCPU[evt]);
mProfilerQueriesUsed |= flag;
mProfilerQueriesDone &= ~flag;
}
/**
* End a profiling query, after the network is run
*/
inline void PROFILER_END( profilerQuery query )
{
const uint32_t evt = query*2+1;
CUDA(cudaEventRecord(mEventsGPU[evt]));
timestamp(&mEventsCPU[evt]);
timespec cpuTime;
timeDiff(mEventsCPU[evt-1], mEventsCPU[evt], &cpuTime);
mProfilerTimes[query].x = timeFloat(cpuTime);
if( mEnableProfiler && query == PROFILER_NETWORK )
{
LogVerbose(LOG_TRT "layer network time - %f ms\n", gProfiler.timingAccumulator);
gProfiler.timingAccumulator = 0.0f;
LogWarning(LOG_TRT "note -- when processing a single image, run 'sudo jetson_clocks' before\n"
" to disable DVFS for more accurate profiling/timing measurements\n");
}
}
/**
* Query the CUDA part of a profiler query.
*/
inline bool PROFILER_QUERY( profilerQuery query )
{
const uint32_t flag = (1 << query);
if( query == PROFILER_TOTAL )
{
mProfilerTimes[PROFILER_TOTAL].x = 0.0f;
mProfilerTimes[PROFILER_TOTAL].y = 0.0f;
for( uint32_t n=0; n < PROFILER_TOTAL; n++ )
{
if( PROFILER_QUERY((profilerQuery)n) )
{
mProfilerTimes[PROFILER_TOTAL].x += mProfilerTimes[n].x;
mProfilerTimes[PROFILER_TOTAL].y += mProfilerTimes[n].y;
}
}
return true;
}
else if( mProfilerQueriesUsed & flag )
{
if( !(mProfilerQueriesDone & flag) )
{
const uint32_t evt = query*2;
float cuda_time = 0.0f;
CUDA(cudaEventElapsedTime(&cuda_time, mEventsGPU[evt], mEventsGPU[evt+1]));
mProfilerTimes[query].y = cuda_time;
mProfilerQueriesDone |= flag;
//mProfilerQueriesUsed &= ~flag;
}
return true;
}
return false;
}
protected:
/* Member Variables */
std::string mPrototxtPath;
std::string mModelPath;
std::string mModelFile;
std::string mMeanPath;
std::string mCacheEnginePath;
std::string mCacheCalibrationPath;
std::string mChecksumPath;
deviceType mDevice;
precisionType mPrecision;
modelType mModelType;
cudaStream_t mStream;
cudaEvent_t mEventsGPU[PROFILER_TOTAL * 2];
timespec mEventsCPU[PROFILER_TOTAL * 2];
nvinfer1::IRuntime* mInfer;
nvinfer1::ICudaEngine* mEngine;
nvinfer1::IExecutionContext* mContext;
float2 mProfilerTimes[PROFILER_TOTAL + 1];
uint32_t mProfilerQueriesUsed;
uint32_t mProfilerQueriesDone;
uint32_t mWorkspaceSize;
uint32_t mMaxBatchSize;
bool mEnableProfiler;
bool mEnableDebug;
bool mAllowGPUFallback;
void** mBindings;
struct layerInfo
{
std::string name;
Dims3 dims;
uint32_t size;
uint32_t binding;
float* CPU;
float* CUDA;
};
std::vector<layerInfo> mInputs;
std::vector<layerInfo> mOutputs;
};
#endif