-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreate_matrix.R
53 lines (45 loc) · 2.03 KB
/
create_matrix.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
## David Teuscher
## Latest changes: 07.06.2021
## This script creates the data used to fit adjusted plus minus and
## regularized adjusted plus minus
########################################################
# Load functions to parse the data and clean the data
source("wnba_pbp_scrape.R")
source("clean_data.R")
pbp_2019 <- clean_data(2019)
# Extract the unique game ids for 2019
game_ids <- unique(pbp_2019$game_id)
# Create an empty data frame to hold data
empty_data_frame <- data.frame(home_points = numeric(), away_points = numeric() , point_diff = numeric(), home_possession = numeric(), Player = character(), game_id = character())
# Remove the All-star game
games_to_use <- game_ids[c(-204)]
# Loop through each game and parse the data and append it to the data frame
for(i in 1:length(games_to_use)){
game_id_string <- paste(games_to_use[i])
pbp <- pbp_2019 %>% filter(game_id == games_to_use[i])
data <- possession_data(game_id_string, pbp) %>% bind_cols(game_id = game_id_string)
empty_data_frame <- empty_data_frame %>% bind_rows(data)
}
# Make player a factor
empty_data_frame <- empty_data_frame %>% mutate(Player = factor(Player))
# Create an X matrix for each player
X <- model.matrix(point_diff ~ -1 + Player, data = empty_data_frame)
# Since the matrix makes 10 rows for each lineup, the matrix needs to be compressed by
# combining each 10 rows
ids <- seq(10, nrow(X), by = 10)
X_small <- matrix(0, nrow = nrow(X)/10, ncol = ncol(X))
colnames(X_small) <- colnames(X)
for(i in ids){
k <- i/10
for(j in 1:ncol(X)){
X_small[k, j] <- sum(X[(i-9):i, j])
}
}
# Extract the point differential and team possession for each possession
points <- seq(1, nrow(empty_data_frame), by = 10)
y <- empty_data_frame$point_diff[points]
home_possession <- empty_data_frame$home_possession[points]
game_id <- empty_data_frame$game_id[points]
# Create a data frame and save the data
point_diff_2019 <- data.frame(game_id, home_possession, X_small, point_diff = y)
#write_csv(point_diff_2019, "Data/point_diff_2019_updated.csv")