forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
t5.hpp
981 lines (843 loc) · 38.7 KB
/
t5.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
#ifndef __T5_HPP__
#define __T5_HPP__
#include <float.h>
#include <limits>
#include <map>
#include <memory>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include "darts.h"
#include "ggml_extend.hpp"
#include "json.hpp"
#include "model.h"
// Port from: https://github.com/google/sentencepiece/blob/master/src/unigram_model.h
// and https://github.com/google/sentencepiece/blob/master/src/unigram_model.h.
// Original License: https://github.com/google/sentencepiece/blob/master/LICENSE
//
// Since tokenization is not the bottleneck in SD, performance was not a major consideration
// during the migration.
class MetaspacePreTokenizer {
private:
std::string replacement;
bool add_prefix_space;
public:
MetaspacePreTokenizer(const std::string replacement = " ", bool add_prefix_space = true)
: replacement(replacement), add_prefix_space(add_prefix_space) {}
std::string tokenize(const std::string& input) const {
std::string tokens;
std::stringstream ss(input);
if (add_prefix_space) {
tokens += replacement;
}
std::string token;
bool firstToken = true;
while (std::getline(ss, token, ' ')) {
if (!firstToken)
tokens += replacement + token;
else
tokens += token;
firstToken = false;
}
return tokens;
}
};
using EncodeResult = std::vector<std::pair<std::string, int>>;
class T5UniGramTokenizer {
public:
enum Status {
OK,
NO_PIECES_LOADED,
NO_ENTRY_FOUND,
BUILD_DOUBLE_ARRAY_FAILED,
PIECE_ALREADY_DEFINED,
INVLIAD_JSON
};
protected:
MetaspacePreTokenizer pre_tokenizer;
// all <piece, score> pairs
std::vector<std::pair<std::string, float>> piece_score_pairs;
float min_score_ = 0.0;
float max_score_ = 0.0;
std::unique_ptr<Darts::DoubleArray> trie_;
// Maximum size of the return value of Trie, which corresponds
// to the maximum size of shared common prefix in the sentence pieces.
int trie_results_size_;
// unknown id.
int unk_id_ = 2;
std::string eos_token_ = "</s>";
int eos_id_ = 1;
int pad_id_ = 0;
// status.
Status status_ = OK;
float kUnkPenalty = 10.0;
std::string replacement;
bool add_prefix_space = true;
void InitializePieces(const std::string& json_str) {
nlohmann::json data;
try {
data = nlohmann::json::parse(json_str);
} catch (const nlohmann::json::parse_error& e) {
status_ = INVLIAD_JSON;
return;
}
if (!data.contains("model")) {
status_ = INVLIAD_JSON;
return;
}
nlohmann::json model = data["model"];
if (!model.contains("vocab")) {
status_ = INVLIAD_JSON;
return;
}
if (model.contains("unk_id")) {
unk_id_ = model["unk_id"];
}
replacement = data["pre_tokenizer"]["replacement"];
add_prefix_space = data["pre_tokenizer"]["add_prefix_space"];
pre_tokenizer = MetaspacePreTokenizer(replacement, add_prefix_space);
for (const auto& item : model["vocab"]) {
if (item.size() != 2 || !item[0].is_string() || !item[1].is_number_float()) {
status_ = INVLIAD_JSON;
return;
}
std::string piece = item[0];
float score = item[1];
piece_score_pairs.emplace_back(piece, score);
}
}
// Builds a Trie index.
void BuildTrie(std::vector<std::pair<std::string, int>>* pieces) {
if (status_ != OK)
return;
if (pieces->empty()) {
status_ = NO_PIECES_LOADED;
return;
}
// sort by sentencepiece since DoubleArray::build()
// only accepts sorted strings.
sort(pieces->begin(), pieces->end());
// Makes key/value set for DoubleArrayTrie.
std::vector<const char*> key(pieces->size());
std::vector<int> value(pieces->size());
for (size_t i = 0; i < pieces->size(); ++i) {
key[i] = (*pieces)[i].first.data(); // sorted piece.
value[i] = (*pieces)[i].second; // vocab_id
}
trie_ = std::unique_ptr<Darts::DoubleArray>(new Darts::DoubleArray());
if (trie_->build(key.size(), const_cast<char**>(&key[0]), nullptr,
&value[0]) != 0) {
status_ = BUILD_DOUBLE_ARRAY_FAILED;
return;
}
// Computes the maximum number of shared prefixes in the trie.
const int kMaxTrieResultsSize = 1024;
std::vector<Darts::DoubleArray::result_pair_type> results(
kMaxTrieResultsSize);
trie_results_size_ = 0;
for (const auto& p : *pieces) {
const int num_nodes = trie_->commonPrefixSearch(
p.first.data(), results.data(), results.size(), p.first.size());
trie_results_size_ = std::max(trie_results_size_, num_nodes);
}
if (trie_results_size_ == 0)
status_ = NO_ENTRY_FOUND;
}
// Non-virtual (inlined) implementation for faster execution.
inline float GetScoreInlined(int id) const {
return piece_score_pairs[id].second;
}
inline bool IsUnusedInlined(int id) const {
return false; // TODO
}
inline bool IsUserDefinedInlined(int id) const {
return false; // TODO
}
inline size_t OneCharLen(const char* src) const {
return "\1\1\1\1\1\1\1\1\1\1\1\1\2\2\3\4"[(*src & 0xFF) >> 4];
}
// The optimized Viterbi encode.
// Main differences from the original function:
// 1. Memorizes the best path at each postion so far,
// 2. No need to store the Lattice nodes,
// 3. Works in utf-8 directly,
// 4. Defines a new struct with fewer fields than Lattice,
// 5. Does not depend on `class Lattice` nor call `SetSentence()`,
// `PopulateNodes()`, or `Viterbi()`. It does everything in one function.
// For detailed explanations please see the comments inside the function body.
EncodeResult EncodeOptimized(const std::string& normalized) const {
// An optimized Viterbi algorithm for unigram language models. Benchmarking
// results show that it generates almost identical outputs and achieves 2.1x
// speedup on average for 102 languages compared to the original
// implementation. It's based on the following three ideas:
//
// 1. Because it uses the *unigram* model:
// best_score(x1, x2, …, xt) = best_score(x1, x2, …, x{t-1}) + score(xt)
// Deciding the best path (and score) can be decoupled into two isolated
// terms: (a) the best path ended before the last token `best_score(x1, x2, …,
// x{t-1})`, and (b) the last token and its `score(xt)`. The two terms are
// not related to each other at all.
//
// Therefore, we can compute once and store the *best_path ending at
// each character position*. In this way, when we know best_path_ends_at[M],
// we can reuse it to compute all the best_path_ends_at_[...] where the last
// token starts at the same character position M.
//
// This improves the time complexity from O(n*k*k) to O(n*k) because it
// eliminates the extra loop of recomputing the best path ending at the same
// position, where n is the input length and k is the maximum number of tokens
// that can be recognized starting at each position.
//
// 2. Again, because it uses the *unigram* model, we don’t need to actually
// store the lattice nodes. We still recognize all the tokens and lattice
// nodes from the input, but along identifying them, we use and discard them
// on the fly. There is no need to actually store them for best path Viterbi
// decoding. The only thing we need to store is the best_path ending at
// each character position.
//
// This improvement reduces the things needed to store in memory from O(n*k)
// to O(n), where n is the input length and k is the maximum number of tokens
// that can be recognized starting at each position.
//
// It also avoids the need of dynamic-size lattice node pool, because the
// number of things to store is fixed as n.
//
// 3. SentencePiece is designed to work with unicode, taking utf-8 encoding
// inputs. In the original implementation, the lattice positions are based on
// unicode positions. A mapping from unicode position to the utf-8 position is
// maintained to recover the utf-8 string piece.
//
// We found that it is sufficient and beneficial to directly work with utf-8
// positions:
//
// Firstly, it saves the conversion and mapping between unicode positions and
// utf-8 positions.
//
// Secondly, it reduces the number of fields we need to maintain in the
// node/path structure. Specifically, there are 8 fields defined in
// `Lattice::Node` used by the original encoder, but here in the optimized
// encoder we only need to define 3 fields in `BestPathNode`.
if (status() != OK || normalized.empty()) {
return {};
}
// Represents the last node of the best path.
struct BestPathNode {
int id = -1; // The vocab id. (maybe -1 for UNK)
float best_path_score =
0; // The total score of the best path ending at this node.
int starts_at =
-1; // The starting position (in utf-8) of this node. The entire best
// path can be constructed by backtracking along this link.
};
const int size = normalized.size();
const float unk_score = min_score() - kUnkPenalty;
// The ends are exclusive.
std::vector<BestPathNode> best_path_ends_at(size + 1);
// Generate lattice on-the-fly (not stored) and update best_path_ends_at.
int starts_at = 0;
while (starts_at < size) {
std::size_t node_pos = 0;
std::size_t key_pos = starts_at;
const auto best_path_score_till_here =
best_path_ends_at[starts_at].best_path_score;
bool has_single_node = false;
const int mblen =
std::min<int>(OneCharLen(normalized.data() + starts_at),
size - starts_at);
while (key_pos < size) {
const int ret =
trie_->traverse(normalized.data(), node_pos, key_pos, key_pos + 1);
if (ret == -2)
break;
if (ret >= 0) {
if (IsUnusedInlined(ret))
continue;
// Update the best path node.
auto& target_node = best_path_ends_at[key_pos];
const auto length = (key_pos - starts_at);
// User defined symbol receives extra bonus to always be selected.
const auto score = IsUserDefinedInlined(ret)
? (length * max_score_ - 0.1)
: GetScoreInlined(ret);
const auto candidate_best_path_score =
score + best_path_score_till_here;
if (target_node.starts_at == -1 ||
candidate_best_path_score > target_node.best_path_score) {
target_node.best_path_score = candidate_best_path_score;
target_node.starts_at = starts_at;
target_node.id = ret;
}
if (!has_single_node && length == mblen) {
has_single_node = true;
}
}
}
if (!has_single_node) {
auto& target_node = best_path_ends_at[starts_at + mblen];
const auto candidate_best_path_score =
unk_score + best_path_score_till_here;
if (target_node.starts_at == -1 ||
candidate_best_path_score > target_node.best_path_score) {
target_node.best_path_score = candidate_best_path_score;
target_node.starts_at = starts_at;
target_node.id = unk_id_;
}
}
// Move by one unicode character.
starts_at += mblen;
}
// Backtrack to identify the best path.
EncodeResult results;
int ends_at = size;
while (ends_at > 0) {
const auto& node = best_path_ends_at[ends_at];
results.emplace_back(
normalized.substr(node.starts_at, ends_at - node.starts_at), node.id);
ends_at = node.starts_at;
}
std::reverse(results.begin(), results.end());
return results;
}
public:
explicit T5UniGramTokenizer(const std::string& json_str = "") {
if (json_str.size() != 0) {
InitializePieces(json_str);
} else {
InitializePieces(ModelLoader::load_t5_tokenizer_json());
}
min_score_ = FLT_MAX;
max_score_ = FLT_MIN;
std::vector<std::pair<std::string, int>> pieces;
for (int i = 0; i < piece_score_pairs.size(); i++) {
const auto& sp = piece_score_pairs[i];
min_score_ = std::min(min_score_, sp.second);
max_score_ = std::max(max_score_, sp.second);
pieces.emplace_back(sp.first, i);
}
BuildTrie(&pieces);
}
~T5UniGramTokenizer(){};
std::string Normalize(const std::string& input) const {
// Ref: https://github.com/huggingface/tokenizers/blob/1ff56c0c70b045f0cd82da1af9ac08cd4c7a6f9f/bindings/python/py_src/tokenizers/implementations/sentencepiece_unigram.py#L29
// TODO: nmt-nfkc
std::string normalized = std::regex_replace(input, std::regex(" {2,}"), " ");
return normalized;
}
std::vector<int> Encode(const std::string& input, bool append_eos_if_not_present = true) const {
std::string normalized = Normalize(input);
normalized = pre_tokenizer.tokenize(normalized);
EncodeResult result = EncodeOptimized(normalized);
if (result.size() > 0 && append_eos_if_not_present) {
auto item = result[result.size() - 1];
if (item.first != eos_token_) {
result.emplace_back(eos_token_, eos_id_);
}
}
std::vector<int> tokens;
for (auto item : result) {
tokens.push_back(item.second);
}
return tokens;
}
void pad_tokens(std::vector<int>& tokens,
std::vector<float>& weights,
size_t max_length = 0,
bool padding = false) {
if (max_length > 0 && padding) {
size_t orig_token_num = tokens.size() - 1;
size_t n = std::ceil(orig_token_num * 1.0 / (max_length - 1));
if (n == 0) {
n = 1;
}
size_t length = max_length * n;
LOG_DEBUG("token length: %llu", length);
std::vector<int> new_tokens;
std::vector<float> new_weights;
int token_idx = 0;
for (int i = 0; i < length; i++) {
if (token_idx >= orig_token_num) {
break;
}
if (i % max_length == max_length - 1) {
new_tokens.push_back(eos_id_);
new_weights.push_back(1.0);
} else {
new_tokens.push_back(tokens[token_idx]);
new_weights.push_back(weights[token_idx]);
token_idx++;
}
}
new_tokens.push_back(eos_id_);
new_weights.push_back(1.0);
tokens = new_tokens;
weights = new_weights;
if (padding) {
int pad_token_id = pad_id_;
tokens.insert(tokens.end(), length - tokens.size(), pad_token_id);
weights.insert(weights.end(), length - weights.size(), 1.0);
}
}
}
// Returns the minimum score in sentence pieces.
// min_score() - 10 is used for the cost of unknown sentence.
float min_score() const { return min_score_; }
// Returns the maximum score in sentence pieces.
// max_score() is used for the cost of user defined symbols.
float max_score() const { return max_score_; }
Status status() const { return status_; }
};
class T5LayerNorm : public UnaryBlock {
protected:
int64_t hidden_size;
float eps;
void init_params(struct ggml_context* ctx, ggml_type wtype) {
params["weight"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
}
public:
T5LayerNorm(int64_t hidden_size,
float eps = 1e-06f)
: hidden_size(hidden_size),
eps(eps) {}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
struct ggml_tensor* w = params["weight"];
x = ggml_rms_norm(ctx, x, eps);
x = ggml_mul(ctx, x, w);
return x;
}
};
struct T5DenseActDense : public UnaryBlock {
public:
T5DenseActDense(int64_t model_dim, int64_t ff_dim) {
blocks["wi"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, ff_dim, false));
blocks["wo"] = std::shared_ptr<GGMLBlock>(new Linear(ff_dim, model_dim, false));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, n_token, model_dim]
auto wi = std::dynamic_pointer_cast<Linear>(blocks["wi"]);
auto wo = std::dynamic_pointer_cast<Linear>(blocks["wo"]);
x = wi->forward(ctx, x);
x = ggml_relu_inplace(ctx, x);
x = wo->forward(ctx, x);
return x;
}
};
struct T5DenseGatedActDense : public UnaryBlock {
public:
T5DenseGatedActDense(int64_t model_dim, int64_t ff_dim) {
blocks["wi_0"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, ff_dim, false));
blocks["wi_1"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, ff_dim, false));
blocks["wo"] = std::shared_ptr<GGMLBlock>(new Linear(ff_dim, model_dim, false));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, n_token, model_dim]
auto wi_0 = std::dynamic_pointer_cast<Linear>(blocks["wi_0"]);
auto wi_1 = std::dynamic_pointer_cast<Linear>(blocks["wi_1"]);
auto wo = std::dynamic_pointer_cast<Linear>(blocks["wo"]);
auto hidden_gelu = ggml_gelu_inplace(ctx, wi_0->forward(ctx, x));
auto hidden_linear = wi_1->forward(ctx, x);
x = ggml_mul_inplace(ctx, hidden_gelu, hidden_linear);
x = wo->forward(ctx, x);
return x;
}
};
struct T5LayerFF : public UnaryBlock {
public:
T5LayerFF(int64_t model_dim, int64_t ff_dim) {
blocks["DenseReluDense"] = std::shared_ptr<GGMLBlock>(new T5DenseGatedActDense(model_dim, ff_dim));
blocks["layer_norm"] = std::shared_ptr<GGMLBlock>(new T5LayerNorm(model_dim));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, n_token, model_dim]
auto DenseReluDense = std::dynamic_pointer_cast<T5DenseGatedActDense>(blocks["DenseReluDense"]);
auto layer_norm = std::dynamic_pointer_cast<T5LayerNorm>(blocks["layer_norm"]);
auto forwarded_states = layer_norm->forward(ctx, x);
forwarded_states = DenseReluDense->forward(ctx, forwarded_states);
x = ggml_add_inplace(ctx, forwarded_states, x);
return x;
}
};
class T5Attention : public GGMLBlock {
protected:
int64_t model_dim;
int64_t inner_dim;
int64_t num_heads;
bool using_relative_attention_bias;
int64_t relative_attention_num_buckets = 32;
int64_t relative_attention_max_distance = 128;
public:
T5Attention(int64_t model_dim,
int64_t inner_dim,
int64_t num_heads,
bool using_relative_attention_bias = false)
: model_dim(model_dim),
inner_dim(inner_dim),
num_heads(num_heads),
using_relative_attention_bias(using_relative_attention_bias) {
blocks["q"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, inner_dim, false));
blocks["k"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, inner_dim, false));
blocks["v"] = std::shared_ptr<GGMLBlock>(new Linear(model_dim, inner_dim, false));
blocks["o"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, model_dim, false));
if (using_relative_attention_bias) {
blocks["relative_attention_bias"] = std::shared_ptr<GGMLBlock>(new Embedding(relative_attention_num_buckets, num_heads));
}
}
struct ggml_tensor* compute_bias(struct ggml_context* ctx,
struct ggml_tensor* relative_position_bucket) {
auto relative_attention_bias = std::dynamic_pointer_cast<Embedding>(blocks["relative_attention_bias"]);
auto values = relative_attention_bias->forward(ctx, relative_position_bucket); // shape (query_length, key_length, num_heads)
values = ggml_cont(ctx, ggml_permute(ctx, values, 2, 0, 1, 3)); // shape (1, num_heads, query_length, key_length)
return values;
}
// x: [N, n_token, model_dim]
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* mask = NULL,
struct ggml_tensor* relative_position_bucket = NULL) {
auto q_proj = std::dynamic_pointer_cast<Linear>(blocks["q"]);
auto k_proj = std::dynamic_pointer_cast<Linear>(blocks["k"]);
auto v_proj = std::dynamic_pointer_cast<Linear>(blocks["v"]);
auto out_proj = std::dynamic_pointer_cast<Linear>(blocks["o"]);
int64_t n_head = num_heads;
int64_t d_head = inner_dim / n_head;
auto q = q_proj->forward(ctx, x);
auto k = k_proj->forward(ctx, x);
auto v = v_proj->forward(ctx, x);
if (using_relative_attention_bias && relative_position_bucket != NULL) {
past_bias = compute_bias(ctx, relative_position_bucket);
}
if (past_bias != NULL) {
if (mask != NULL) {
mask = ggml_add(ctx, mask, past_bias);
} else {
mask = past_bias;
}
}
k = ggml_scale_inplace(ctx, k, sqrt(d_head));
x = ggml_nn_attention_ext(ctx, q, k, v, num_heads, mask); // [N, n_token, d_head * n_head]
x = out_proj->forward(ctx, x); // [N, n_token, model_dim]
return {x, past_bias};
}
};
struct T5LayerSelfAttention : public GGMLBlock {
public:
T5LayerSelfAttention(int64_t model_dim,
int64_t inner_dim,
int64_t ff_dim,
int64_t num_heads,
bool using_relative_attention_bias) {
blocks["SelfAttention"] = std::shared_ptr<GGMLBlock>(new T5Attention(model_dim, inner_dim, num_heads, using_relative_attention_bias));
blocks["layer_norm"] = std::shared_ptr<GGMLBlock>(new T5LayerNorm(model_dim));
}
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* mask = NULL,
struct ggml_tensor* relative_position_bucket = NULL) {
// x: [N, n_token, model_dim]
auto SelfAttention = std::dynamic_pointer_cast<T5Attention>(blocks["SelfAttention"]);
auto layer_norm = std::dynamic_pointer_cast<T5LayerNorm>(blocks["layer_norm"]);
auto normed_hidden_state = layer_norm->forward(ctx, x);
auto ret = SelfAttention->forward(ctx, normed_hidden_state, past_bias, mask, relative_position_bucket);
auto output = ret.first;
past_bias = ret.second;
x = ggml_add_inplace(ctx, output, x);
return {x, past_bias};
}
};
struct T5Block : public GGMLBlock {
public:
T5Block(int64_t model_dim, int64_t inner_dim, int64_t ff_dim, int64_t num_heads, bool using_relative_attention_bias) {
blocks["layer.0"] = std::shared_ptr<GGMLBlock>(new T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, using_relative_attention_bias));
blocks["layer.1"] = std::shared_ptr<GGMLBlock>(new T5LayerFF(model_dim, ff_dim));
}
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* mask = NULL,
struct ggml_tensor* relative_position_bucket = NULL) {
// x: [N, n_token, model_dim]
auto layer_0 = std::dynamic_pointer_cast<T5LayerSelfAttention>(blocks["layer.0"]);
auto layer_1 = std::dynamic_pointer_cast<T5LayerFF>(blocks["layer.1"]);
auto ret = layer_0->forward(ctx, x, past_bias, mask, relative_position_bucket);
x = ret.first;
past_bias = ret.second;
x = layer_1->forward(ctx, x);
return {x, past_bias};
}
};
struct T5Stack : public GGMLBlock {
int64_t num_layers;
public:
T5Stack(int64_t num_layers,
int64_t model_dim,
int64_t inner_dim,
int64_t ff_dim,
int64_t num_heads)
: num_layers(num_layers) {
for (int i = 0; i < num_layers; i++) {
blocks["block." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new T5Block(model_dim, inner_dim, ff_dim, num_heads, i == 0));
}
blocks["final_layer_norm"] = std::shared_ptr<GGMLBlock>(new T5LayerNorm(model_dim));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* attention_mask = NULL,
struct ggml_tensor* relative_position_bucket = NULL) {
// x: [N, n_token, model_dim]
for (int i = 0; i < num_layers; i++) {
auto block = std::dynamic_pointer_cast<T5Block>(blocks["block." + std::to_string(i)]);
auto ret = block->forward(ctx, x, past_bias, attention_mask, relative_position_bucket);
x = ret.first;
past_bias = ret.second;
}
auto final_layer_norm = std::dynamic_pointer_cast<T5LayerNorm>(blocks["final_layer_norm"]);
x = final_layer_norm->forward(ctx, x);
return x;
}
};
struct T5 : public GGMLBlock {
public:
T5(int64_t num_layers,
int64_t model_dim,
int64_t ff_dim,
int64_t num_heads,
int64_t vocab_size) {
blocks["encoder"] = std::shared_ptr<GGMLBlock>(new T5Stack(num_layers, model_dim, model_dim, ff_dim, num_heads));
blocks["shared"] = std::shared_ptr<GGMLBlock>(new Embedding(vocab_size, model_dim));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* input_ids,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* attention_mask = NULL,
struct ggml_tensor* relative_position_bucket = NULL) {
// input_ids: [N, n_token]
auto shared = std::dynamic_pointer_cast<Embedding>(blocks["shared"]);
auto encoder = std::dynamic_pointer_cast<T5Stack>(blocks["encoder"]);
auto x = shared->forward(ctx, input_ids);
x = encoder->forward(ctx, x, past_bias, attention_mask, relative_position_bucket);
return x;
}
};
struct T5Runner : public GGMLRunner {
T5 model;
std::vector<int> relative_position_bucket_vec;
T5Runner(ggml_backend_t backend,
ggml_type wtype,
int64_t num_layers = 24,
int64_t model_dim = 4096,
int64_t ff_dim = 10240,
int64_t num_heads = 64,
int64_t vocab_size = 32128)
: GGMLRunner(backend, wtype), model(num_layers, model_dim, ff_dim, num_heads, vocab_size) {
model.init(params_ctx, wtype);
}
std::string get_desc() {
return "t5";
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
model.get_param_tensors(tensors, prefix);
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* input_ids,
struct ggml_tensor* relative_position_bucket) {
size_t N = input_ids->ne[1];
size_t n_token = input_ids->ne[0];
auto hidden_states = model.forward(ctx, input_ids, NULL, NULL, relative_position_bucket); // [N, n_token, model_dim]
return hidden_states;
}
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids) {
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
input_ids = to_backend(input_ids);
relative_position_bucket_vec = compute_relative_position_bucket(input_ids->ne[0], input_ids->ne[0]);
// for (int i = 0; i < relative_position_bucket_vec.size(); i++) {
// if (i % 77 == 0) {
// printf("\n");
// }
// printf("%d ", relative_position_bucket_vec[i]);
// }
auto relative_position_bucket = ggml_new_tensor_2d(compute_ctx,
GGML_TYPE_I32,
input_ids->ne[0],
input_ids->ne[0]);
set_backend_tensor_data(relative_position_bucket, relative_position_bucket_vec.data());
struct ggml_tensor* hidden_states = forward(compute_ctx, input_ids, relative_position_bucket);
ggml_build_forward_expand(gf, hidden_states);
return gf;
}
void compute(const int n_threads,
struct ggml_tensor* input_ids,
ggml_tensor** output,
ggml_context* output_ctx = NULL) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(input_ids);
};
GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
}
static std::vector<int> _relative_position_bucket(const std::vector<int>& relative_position,
bool bidirectional = true,
int num_buckets = 32,
int max_distance = 128) {
std::vector<int> relative_buckets(relative_position.size(), 0);
std::vector<int> abs_relative_position = relative_position;
if (bidirectional) {
num_buckets = num_buckets / 2;
for (size_t i = 0; i < relative_position.size(); ++i) {
if (relative_position[i] > 0) {
relative_buckets[i] += num_buckets;
}
abs_relative_position[i] = std::abs(relative_position[i]);
}
} else {
for (size_t i = 0; i < relative_position.size(); ++i) {
abs_relative_position[i] = std::max(-relative_position[i], 0);
}
}
int max_exact = num_buckets / 2;
std::vector<int> relative_position_if_large(relative_position.size(), 0);
for (size_t i = 0; i < relative_position.size(); ++i) {
if (abs_relative_position[i] < max_exact) {
relative_buckets[i] += abs_relative_position[i];
} else {
float log_pos = std::log(static_cast<float>(abs_relative_position[i]) / max_exact);
float log_base = std::log(static_cast<float>(max_distance) / max_exact);
relative_position_if_large[i] = max_exact + static_cast<int>((log_pos / log_base) * (num_buckets - max_exact));
relative_position_if_large[i] = std::min(relative_position_if_large[i], num_buckets - 1);
relative_buckets[i] += relative_position_if_large[i];
}
}
return relative_buckets;
}
std::vector<int> compute_relative_position_bucket(int query_length,
int key_length) {
std::vector<int> context_position(query_length);
std::vector<int> memory_position(key_length);
for (int i = 0; i < query_length; ++i) {
context_position[i] = i;
}
for (int i = 0; i < key_length; ++i) {
memory_position[i] = i;
}
std::vector<std::vector<int>> relative_position(query_length, std::vector<int>(key_length, 0));
for (int i = 0; i < query_length; ++i) {
for (int j = 0; j < key_length; ++j) {
relative_position[i][j] = memory_position[j] - context_position[i];
}
}
std::vector<int> relative_position_bucket;
for (int i = 0; i < query_length; ++i) {
std::vector<int> result = _relative_position_bucket(relative_position[i], true);
relative_position_bucket.insert(relative_position_bucket.end(), result.begin(), result.end());
}
return relative_position_bucket;
}
};
struct T5Embedder {
T5UniGramTokenizer tokenizer;
T5Runner model;
T5Embedder(ggml_backend_t backend,
ggml_type wtype,
int64_t num_layers = 24,
int64_t model_dim = 4096,
int64_t ff_dim = 10240,
int64_t num_heads = 64,
int64_t vocab_size = 32128)
: model(backend, wtype, num_layers, model_dim, ff_dim, num_heads, vocab_size) {
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
model.get_param_tensors(tensors, prefix);
}
void alloc_params_buffer() {
model.alloc_params_buffer();
}
std::pair<std::vector<int>, std::vector<float>> tokenize(std::string text,
size_t max_length = 0,
bool padding = false) {
auto parsed_attention = parse_prompt_attention(text);
{
std::stringstream ss;
ss << "[";
for (const auto& item : parsed_attention) {
ss << "['" << item.first << "', " << item.second << "], ";
}
ss << "]";
LOG_DEBUG("parse '%s' to %s", text.c_str(), ss.str().c_str());
}
std::vector<int> tokens;
std::vector<float> weights;
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;
std::vector<int> curr_tokens = tokenizer.Encode(curr_text, false);
tokens.insert(tokens.end(), curr_tokens.begin(), curr_tokens.end());
weights.insert(weights.end(), curr_tokens.size(), curr_weight);
}
int EOS_TOKEN_ID = 1;
tokens.push_back(EOS_TOKEN_ID);
weights.push_back(1.0);
tokenizer.pad_tokens(tokens, weights, max_length, padding);
// for (int i = 0; i < tokens.size(); i++) {
// std::cout << tokens[i] << ":" << weights[i] << ", ";
// }
// std::cout << std::endl;
return {tokens, weights};
}
void test() {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10 MB
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* work_ctx = ggml_init(params);
GGML_ASSERT(work_ctx != NULL);
{
// cpu f16: pass
// cpu f32: pass
// cuda f16: nan
// cuda f32: pass
// cuda q8_0: nan
// TODO: fix cuda nan
std::string text("a lovely cat");
auto tokens_and_weights = tokenize(text, 77, true);
std::vector<int>& tokens = tokens_and_weights.first;
std::vector<float>& weights = tokens_and_weights.second;
for (auto token : tokens) {
printf("%d ", token);
}
printf("\n");
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
struct ggml_tensor* out = NULL;
int t0 = ggml_time_ms();
model.compute(8, input_ids, &out, work_ctx);
int t1 = ggml_time_ms();
print_ggml_tensor(out);
LOG_DEBUG("t5 test done in %dms", t1 - t0);
}
}
static void load_from_file_and_test(const std::string& file_path) {
// ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_F32;
std::shared_ptr<T5Embedder> t5 = std::shared_ptr<T5Embedder>(new T5Embedder(backend, model_data_type));
{
LOG_INFO("loading from '%s'", file_path.c_str());
t5->alloc_params_buffer();
std::map<std::string, ggml_tensor*> tensors;
t5->get_param_tensors(tensors, "");
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path)) {
LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str());
return;
}
bool success = model_loader.load_tensors(tensors, backend);
if (!success) {
LOG_ERROR("load tensors from model loader failed");
return;
}
LOG_INFO("t5 model loaded");
}
t5->test();
}
};
#endif // __T5_HPP__