-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinductive_edge_np.py
405 lines (349 loc) · 14.8 KB
/
inductive_edge_np.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
'''Unified interface to all dynamic graph model experiments'''
import argparse
import logging
import math
import os
import random
import sys
import time
import networkx as nx
import numpy as np
import pandas as pd
import torch
from sklearn.metrics import (accuracy_score, average_precision_score, f1_score,
roc_auc_score)
from sklearn.preprocessing import MinMaxScaler
from tqdm import trange
from graph import SubgraphNeighborFinder
from inductive_util import load_indudctive_data, load_mask_data
from subgnn_np import SubGnnNp
from utils import (EarlyStopMonitor, RandEdgeSampler, get_free_gpu,
set_random_seed)
#import numba
# Argument and global variables
if True:
parser = argparse.ArgumentParser(
'Interface for subgraph experiments on link predictions')
parser.add_argument('-d',
'--data',
type=str,
help='data sources to use',
default='ia-contact')
parser.add_argument('-t',
'--task',
default='inductive',
choices=['inductive', 'edge', 'node'])
parser.add_argument('-f', '--freeze', action='store_true')
parser.add_argument('--bs', type=int, default=200, help='batch_size')
parser.add_argument('--prefix',
type=str,
default='Inductive-TIP',
help='prefix to name the checkpoints')
parser.add_argument('--n_degree',
type=int,
default=20,
help='number of neighbors to sample')
parser.add_argument('--n_head',
type=int,
default=2,
help='number of heads used in attention layer')
parser.add_argument('--n_epoch',
type=int,
default=50,
help='number of epochs')
parser.add_argument('--n_layer',
type=int,
default=2,
help='number of network layers')
parser.add_argument('--lr',
type=float,
default=0.0001,
help='learning rate')
parser.add_argument('--drop_out',
type=float,
default=0.1,
help='dropout probability')
parser.add_argument('--gpu',
type=int,
default=0,
help='idx for the gpu to use')
parser.add_argument('--node_dim',
type=int,
default=120,
help='Dimentions of the node embedding')
parser.add_argument('--time_dim',
type=int,
default=120,
help='Dimentions of the time embedding')
parser.add_argument('--attn_mode',
type=str,
choices=['prod', 'map'],
default='prod',
help='use dot product attention or mapping based')
parser.add_argument('--uniform',
action='store_true',
help='take uniform sampling from temporal neighbors')
parser.add_argument('--num_prop', type=int, default=2)
parser.add_argument('--num_mlp_layers', type=int, default=2)
parser.add_argument('--alpha', type=float, default=0.0)
parser.add_argument('--no-scale',
action='store_false',
dest='scale',
help='MinMaxScaler for node features')
try:
args = parser.parse_args()
except:
parser.print_help()
sys.exit(0)
# set_random_seed()
# Arguments
if True:
import warnings
warnings.filterwarnings('always')
PREFIX = args.prefix
SCALE = args.scale
TASK = args.task
FREEZE = args.freeze
BATCH_SIZE = args.bs
NUM_NEIGHBORS = args.n_degree
NUM_NEG = 1
NUM_EPOCH = args.n_epoch
NUM_HEADS = args.n_head
DROP_OUT = args.drop_out
GPU = args.gpu
UNIFORM = args.uniform
ATTN_MODE = args.attn_mode
DATA = args.data
NUM_LAYER = args.n_layer
LEARNING_RATE = args.lr
NODE_DIM = args.node_dim
TIME_DIM = args.time_dim
# Specific arguments
NUM_PROP = args.num_prop
NUM_MLP_LAYERS = args.num_mlp_layers
ALPHA = args.alpha
# Model initialize
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
device = torch.device('cuda:{}'.format(GPU))
import socket
DEVICE_STR = f'{socket.gethostname()}-{device.index}'
PARAM_STR = f'{FREEZE}-{NUM_LAYER}-{NUM_HEADS}-{NUM_NEIGHBORS}'
PARAM_STR += f'-{NUM_PROP}-{NUM_MLP_LAYERS}-{ALPHA}'
PARAM_STR += f'-{BATCH_SIZE}-{DROP_OUT}-{UNIFORM}'
MODEL_SAVE_PATH = f'./saved_models/{args.prefix}-{TASK}-{PARAM_STR}-{DATA}.pth'
def get_checkpoint_path(epoch):
return f'./ckpt/{args.prefix}-{TASK}-{DEVICE_STR}-{PARAM_STR}-{DATA}-{epoch}.pth'
# set up logger
if True:
# set up logger
logging.basicConfig(format='%(asctime)s %(name)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S')
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler('log/{}.log'.format(str(time.time())))
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.WARN)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
logger.info(args)
def eval_one_epoch(tgan, edges, sampler):
if len(edges) <= 0:
return -1.0, -1.0, -1.0, -1.0
assert sampler.seed is not None
sampler.reset_random_state()
src_l = edges['from_node_id'].to_numpy()
dst_l = edges['to_node_id'].to_numpy()
ts_l = edges['timestamp'].to_numpy()
with torch.no_grad():
tgan = tgan.eval()
TEST_BATCH_SIZE = BATCH_SIZE
num_test_instance = len(src_l)
num_test_batch = math.ceil(len(src_l) / TEST_BATCH_SIZE)
scores = []
labels = []
for k in range(num_test_batch):
s_idx = k * TEST_BATCH_SIZE
e_idx = min(s_idx + TEST_BATCH_SIZE, num_test_instance)
src_l_cut = src_l[s_idx:e_idx]
dst_l_cut = dst_l[s_idx:e_idx]
ts_l_cut = ts_l[s_idx:e_idx]
size = len(src_l_cut)
_, dst_l_fake = sampler.sample(size)
pos_prob, neg_prob = tgan.contrast(src_l_cut, dst_l_cut, dst_l_fake, ts_l_cut, NUM_NEIGHBORS)
pred_score = np.concatenate([(pos_prob).cpu().numpy(), (neg_prob).cpu().numpy()])
true_label = np.concatenate([np.ones(size), np.zeros(size)])
scores.extend(list(pred_score))
labels.extend(list(true_label))
pred_label = np.array(scores) > 0.5
pred_prob = np.array(scores)
label = np.array(labels)
acc = accuracy_score(label, pred_label)
ap = average_precision_score(label, pred_label)
f1 = f1_score(label, pred_label)
auc = roc_auc_score(label, pred_prob)
return acc, ap, f1, auc
# Load data and train val test split
if True:
edges, nodes = load_indudctive_data(DATA)
# We add a dummy node 0 for the empty sequence.
if SCALE:
n_feat = MinMaxScaler().fit_transform(nodes.iloc[:, 4:])
else:
n_feat = nodes.iloc[:, 4:].to_numpy()
NODE_DIM = n_feat.shape[1]
zero_pad = np.zeros((1, NODE_DIM))
n_feat = np.vstack([zero_pad, n_feat])
edges['from_node_id'] += 1
edges['to_node_id'] += 1
train_edges, ii_val_edges, nn_val_edges, ii_test_edges, nn_test_edges = load_mask_data(edges, nodes, 0.7, 0.85)
n_nodes = len(nodes)
g_df = edges[['from_node_id', 'to_node_id', 'timestamp']].copy()
g_df['idx'] = np.arange(1, len(g_df) + 1)
g_df.columns = ['u', 'i', 'ts', 'idx']
if len(edges.columns) > 4:
e_feat = edges.iloc[:, 4:].to_numpy()
padding = np.zeros((1, e_feat.shape[1]))
e_feat = np.concatenate((padding, e_feat))
else:
e_feat = np.zeros((len(g_df) + 1, NODE_DIM))
# if FREEZE:
# n_feat = np.zeros((n_nodes + 1, NODE_DIM))
# else:
# bound = np.sqrt(6 / (2 * NODE_DIM))
# n_feat = np.random.uniform(-bound, bound, (n_nodes + 1, NODE_DIM))
src_l = g_df.u.values
dst_l = g_df.i.values
e_idx_l = g_df.idx.values
ts_l = g_df.ts.values
max_src_index = src_l.max()
max_idx = max(src_l.max(), dst_l.max())
# set train, validation, test datasets
if True:
train_src_l = train_edges['from_node_id'].to_numpy()
train_dst_l = train_edges['to_node_id'].to_numpy()
train_ts_l = train_edges['timestamp'].to_numpy()
train_sampler = RandEdgeSampler(train_edges, dst_l)
val_sampler = RandEdgeSampler(edges, dst_l, seed=0)
nn_val_sampler = RandEdgeSampler(nn_val_edges, dst_l, seed=1)
test_sampler = RandEdgeSampler(edges, dst_l, seed=2)
nn_test_sampler = RandEdgeSampler(nn_test_edges, dst_l, seed=3)
# full graph with all the data for the test and validation purpose
full_adj_list = [[] for _ in range(max_idx + 1)]
for src, dst, eidx, ts in zip(src_l, dst_l, e_idx_l, ts_l):
full_adj_list[src].append((dst, eidx, ts))
full_adj_list[dst].append((src, eidx, ts))
# full_ngh_finder = NeighborFinder(full_adj_list, uniform=UNIFORM)
ngh_finder = SubgraphNeighborFinder(full_adj_list,
ts_l,
graph_type='numpy',
task=TASK,
dataset=DATA,
uniform=UNIFORM)
# Model initialize
# os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
# device = torch.device('cuda:{}'.format(GPU))
tgan = SubGnnNp(ngh_finder,
n_feat,
e_feat,
n_feat_freeze=FREEZE,
attn_mode=ATTN_MODE,
num_layers=NUM_LAYER,
num_prop=NUM_PROP,
num_mlp_layers=NUM_MLP_LAYERS,
alpha=ALPHA,
n_head=NUM_HEADS,
drop_out=DROP_OUT)
optimizer = torch.optim.Adam(tgan.parameters(), lr=LEARNING_RATE)
criterion = torch.nn.BCELoss()
tgan = tgan.to(device)
num_instance = len(train_src_l)
num_batch = math.ceil(num_instance / BATCH_SIZE)
logger.info('num of training instances: {}'.format(num_instance))
logger.info('num of batches per epoch: {}'.format(num_batch))
idx_list = np.arange(num_instance)
np.random.shuffle(idx_list)
early_stopper = EarlyStopMonitor(max_round=20)
epoch_bar = trange(NUM_EPOCH)
for epoch in epoch_bar:
# Training
np.random.shuffle(idx_list)
batch_bar = trange(num_batch)
for k in batch_bar:
s_idx = k * BATCH_SIZE
e_idx = min(num_instance, s_idx + BATCH_SIZE)
src_l_cut = train_src_l[s_idx:e_idx]
dst_l_cut = train_dst_l[s_idx:e_idx]
ts_l_cut = train_ts_l[s_idx:e_idx]
size = len(src_l_cut)
src_l_fake, dst_l_fake = train_sampler.sample(size)
with torch.no_grad():
pos_label = torch.ones(size, dtype=torch.float, device=device)
neg_label = torch.zeros(size, dtype=torch.float, device=device)
optimizer.zero_grad()
tgan = tgan.train()
pos_prob, neg_prob = tgan.contrast(src_l_cut, dst_l_cut, dst_l_fake,
ts_l_cut, NUM_NEIGHBORS)
loss = criterion(pos_prob, pos_label)
loss += criterion(neg_prob, neg_label)
loss.backward()
optimizer.step()
# get training results
with torch.no_grad():
tgan = tgan.eval()
pred_score = np.concatenate([(pos_prob).cpu().detach().numpy(),
(neg_prob).cpu().detach().numpy()])
pred_label = pred_score > 0.5
true_label = np.concatenate([np.ones(size), np.zeros(size)])
acc = accuracy_score(true_label, pred_label)
ap = average_precision_score(true_label, pred_label)
f1 = f1_score(true_label, pred_label)
auc = roc_auc_score(true_label, pred_score)
batch_bar.set_postfix(loss=loss.item(), acc=acc, f1=f1, auc=auc)
val_acc, val_ap, val_f1, val_auc = eval_one_epoch(tgan, ii_val_edges, val_sampler)
nn_val_acc, nn_val_ap, nn_val_f1, nn_val_auc = eval_one_epoch(tgan, nn_val_edges, nn_val_sampler)
epoch_bar.set_postfix(auc=val_auc, nn_auc=nn_val_auc)
if early_stopper.early_stop_check(nn_val_auc):
break
else:
torch.save(tgan.state_dict(), get_checkpoint_path(epoch))
logger.info('No improvment over {} epochs, stop training'.format(
early_stopper.max_round))
logger.info(f'Loading the best model at epoch {early_stopper.best_epoch}')
best_model_path = get_checkpoint_path(early_stopper.best_epoch)
tgan.load_state_dict(torch.load(best_model_path))
logger.info(
f'Loaded the best model at epoch {early_stopper.best_epoch} for inference')
tgan.eval()
val_acc, val_ap, val_f1, val_auc = eval_one_epoch(tgan, ii_val_edges, val_sampler)
nn_val_acc, nn_val_ap, nn_val_f1, nn_val_auc = eval_one_epoch(tgan, nn_val_edges, nn_val_sampler)
test_acc, test_ap, test_f1, test_auc = eval_one_epoch(tgan, ii_test_edges, test_sampler)
nn_test_acc, nn_test_ap, nn_test_f1, nn_test_auc = eval_one_epoch(tgan, nn_test_edges, nn_test_sampler)
logger.info('Test statistics: acc: {:.4f}, ap {:.4f}, f1:{:.4f} auc: {:.4f}'.format(
test_acc, test_ap, test_f1, test_auc))
logger.info('Unseen test statistics: acc: {:.4f}, ap {:.4f}, f1:{:.4f} auc: {:.4f}'.format(
nn_test_acc, nn_test_ap, nn_test_f1, nn_test_auc))
logger.info('Saving Subgraph model')
torch.save(tgan.state_dict(), MODEL_SAVE_PATH)
logger.info('Subgraph models saved')
res_path = 'inductive-results/{}-Subgraph.csv'.format(DATA)
headers = ['method', 'dataset', 'valid_auc', 'accuracy', 'ap', 'f1', 'auc', 'nn_accuracy', 'nn_ap', 'nn_f1', 'nn_auc', 'params']
if not os.path.exists(res_path):
f = open(res_path, 'w+')
f.write(','.join(headers) + '\r\n')
f.close()
os.chmod(res_path, 0o777)
config = f'scale={SCALE},num_prop={NUM_PROP},num_mlp_layers={NUM_MLP_LAYERS},alpha={ALPHA}'
config += f',n_layer={NUM_LAYER},n_head={NUM_HEADS},freeze={FREEZE}'
config += f',num_neighbors={NUM_NEIGHBORS},dropout={DROP_OUT},batchsize={BATCH_SIZE},uniform={UNIFORM}'
with open(res_path, 'a') as file:
test_metric = '{:.4f},{:.4f},{:.4f},{:.4f}'.format(test_acc, test_ap, test_f1, test_auc)
nn_test_metric = '{:.4f},{:.4f},{:.4f},{:.4f}'.format(nn_test_acc, nn_test_ap, nn_test_f1, nn_test_auc)
file.write('{},{},{:.4f},{},{},\"{}\"'.format(
PREFIX, DATA, val_auc, test_metric, nn_test_metric, config))
file.write('\n')