-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonline_tap_gnn.py
548 lines (475 loc) · 21.6 KB
/
online_tap_gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import argparse
import logging
import os
import random
import time
from datetime import datetime
import dgl
import dgl.function as fn
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from numba import jit
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score
from torch import nn
from torch.nn import functional as F
from torch.utils.data.dataloader import DataLoader
from tqdm import trange
from data_util import load_data, load_label_edges, load_split_edges
from dataset import TemporalDataset
from tap_gnn import (TAPGNNLinkTrainer, tapgnn_args, precompute_maxeid,
prepare_dataset)
from layers import TimeEncodingLayer
from util_dgl import construct_dglgraph
from utils import (EarlyStopMonitor, RandEdgeSampler, get_free_gpu, set_logger,
set_random_seed, timeit, write_result)
# Change the order so that it is the one used by "nvidia-smi" and not the
# one used by all other programs ("FASTEST_FIRST")
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
class OnlineGConv(nn.Module):
def __init__(self, in_feats, out_feats, agg_type) -> None:
"""
Transform the FastTSAGEConv module parameters into OnlineGConv. We
leave the time_encoder to OnlineSAGE, and focus on MessagePassing here.
The messages are stored in edges, and computed as h_neigh. For
different convolution kernels, we perform incremental computation.
conv: h_self <- h_self + MEAN/POOL/GCN(h_neigh)
Initialize:
history_deg <- zeros()
history_neigh <- zeros()
new_deg <- graph.in_degrees()
new_neigh <- MessagePassing()
h_self <- nfeat
MEAN:
new_neigh <- MessagePassing(graph)
h_neigh <- SUM(new_neigh, history_neigh)
h_neigh <- h_neigh / ADD(new_deg, history_deg)
h_self <- fc_self(h_self) + fc_neigh(h_neigh)
POOL:
new_neigh <- F.relu(fc_pool(new_neigh))
new_neigh <- MessagePassing(graph)
h_neigh <- MAX(new_neigh, history_neigh)
h_self <- fc_self(h_self) + fc_neigh(h_neigh)
GCN:
new_neigh <- MessagePassing(graph)
h_neigh <- ADD(new_neigh, history_neigh)
h_self <- (h_self + h_neigh) / ADD(new_deg, history_deg)
h_self <- fc_neigh(h_self)
Attention:
new_neigh <- MessagePassing(graph)
alpha_neigh <- W_V * new_neigh
new_deg <- MessagePassing(alpha_neigh)
h_neigh <- h_neigh / ADD(new_deg, history_deg)
"""
super(OnlineGConv, self).__init__()
self._in_src_feats, self._in_dst_feats = in_feats, in_feats
self._out_feats = out_feats
self._agg_type = agg_type
if agg_type == 'pool':
self.fc_pool = nn.Linear(self._in_src_feats, self._in_src_feats)
if agg_type == 'lstm':
self.lstm = nn.LSTM(self._in_src_feats,
self._in_src_feats, batch_first=True)
if agg_type == 'attention':
# Query: destination node, Key: source node, Value: fc_neigh
self.wq = nn.Linear(self._in_dst_feats, 1)
self.wk = nn.Linear(self._in_src_feats, 1)
if agg_type != 'gcn':
self.fc_self = nn.Linear(self._in_dst_feats, out_feats)
self.fc_neigh = nn.Linear(self._in_src_feats, out_feats)
self.reset_parameters()
def reset_parameters(self):
"""Reinitialize learnable parameters."""
gain = nn.init.calculate_gain('relu')
if self._agg_type == 'pool':
nn.init.xavier_uniform_(self.fc_pool.weight, gain=gain)
if self._agg_type == 'lstm':
self.lstm.reset_parameters()
if self._agg_type != 'gcn':
nn.init.xavier_uniform_(self.fc_self.weight, gain=gain)
nn.init.xavier_uniform_(self.fc_neigh.weight, gain=gain)
def _lstm_reducer(self, new_neigh, h_, c_):
new_neigh = new_neigh.unsqueeze(1) # (batch, seq, feat)
h_ = h_.unsqueeze(0)
c_ = c_.unsqueeze(0)
# print(new_neigh.shape, h_.shape, c_.shape)
rst, (h_, c_) = self.lstm(new_neigh, (h_, c_))
return rst.squeeze(1), h_.squeeze(0), c_.squeeze(0)
def _node_conv(self, graph, cur_layer=0):
g = graph.local_var()
src_name = f"h_self{cur_layer}"
if self._agg_type == "pool":
g.ndata[src_name] = F.relu(self.fc_pool(g.ndata[src_name]))
g.update_all(fn.copy_u(src_name, "m"), fn.max("m", "new_neigh"))
elif self._agg_type == "attention":
g.ndata[src_name] = self.wk(g.ndata[src_name]) * self.fc_neigh(g.ndata[src_name])
g.update_all(fn.copy_u(src_name, "m"), fn.sum("m", "new_neigh"))
else:
g.update_all(fn.copy_u(src_name, "m"), fn.sum("m", "new_neigh"))
return g.ndata["new_neigh"]
def _edge_conv(self, graph, cur_layer=0):
g = graph.local_var()
src_name = f"h_edge{cur_layer}"
if self._agg_type == "pool":
g.edata[src_name] = F.relu(self.fc_pool(g.edata[src_name]))
g.update_all(fn.copy_e(src_name, "m"), fn.max("m", "new_neigh"))
elif self._agg_type == "attention":
g.edata[src_name] = self.wk(g.edata[src_name]) * self.fc_neigh(g.edata[src_name])
g.update_all(fn.copy_e(src_name, "m"), fn.sum("m", "new_neigh"))
else:
g.update_all(fn.copy_e(src_name, "m"), fn.sum("m", "new_neigh"))
return g.ndata["new_neigh"]
def forward(self, graph, cur_layer=0):
# Now, we have history_deg and history_neigh of each layer.
# But we don't have new_deg and new_h_neigh.
g = graph.local_var()
h_self = g.ndata[f"h_self{cur_layer}"]
hist_neigh = g.ndata[f"history_neigh{cur_layer}"]
deg = g.ndata["history_deg"] + g.in_degrees().to(h_self)
deg = deg.add(1.0)
# For the 0th layer, we combine node_feat, edge_feat and t_encoding
# into the same feature in edges, named h_edge0.
if cur_layer == 0:
new_neigh = self._edge_conv(graph, cur_layer)
else:
new_neigh = self._node_conv(graph, cur_layer)
if self._agg_type == "pool":
hist_neigh = torch.max(hist_neigh, new_neigh)
else:
hist_neigh = hist_neigh + new_neigh
if self._agg_type == "mean":
h_neigh = hist_neigh / deg.unsqueeze(-1)
rst = self.fc_self(h_self) + self.fc_neigh(h_neigh)
elif self._agg_type == "gcn":
h_neigh = (hist_neigh + h_self) / deg.unsqueeze(-1)
rst = self.fc_neigh(h_neigh)
elif self._agg_type == "lstm":
# The hidden states are stored in g.ndata.
h_ = g.ndata[f"lstm_h{cur_layer}"]
c_ = g.ndata[f"lstm_c{cur_layer}"]
rst, h_, c_ = self._lstm_reducer(new_neigh, h_, c_)
elif self._agg_type == "pool":
rst = self.fc_self(h_self) + self.fc_neigh(hist_neigh)
elif self._agg_type == "attention":
h_self = self.wk(h_self) * self.fc_self(h_self)
rst = h_self + hist_neigh
# Record current unnormolized hist_neigh for next computation.
if self._agg_type == "lstm":
return rst, h_, c_
else:
return rst, hist_neigh
class OnlineSAGE(nn.Module):
def __init__(self,
in_feats,
n_hidden,
edge_feats,
n_layers,
activation,
dropout,
agg_type="mean",
time_encoding="cosine") -> None:
super(OnlineSAGE, self).__init__()
self.layers = nn.ModuleList()
self.time_encoder = TimeEncodingLayer(in_feats + edge_feats, n_hidden,
time_encoding=time_encoding)
for i in range(n_layers):
self.layers.append(OnlineGConv(n_hidden, n_hidden, agg_type))
self.dropout = nn.Dropout(dropout)
self.activation = activation
def forward(self, graph):
# We modify the graph data inplace here for incremental computation.
# Init: nfeat, last_time, efeat, timestamp
# State: history_deg, h_edge0, history_neigh{0|1|2}, h_self{0|1|2}
# LSTM: lstm_h{0|1|2}, lstm_c{0|1|2}
g = graph.local_var()
# history_neigh has been set.
g.update_all(fn.copy_e("timestamp", "m"), fn.max("m", "cur_time"))
g.ndata["last_time"] = torch.max(g.ndata["last_time"], g.ndata["cur_time"])
def combine_feats(edges):
return {
"h_edge":
torch.cat([edges.src["nfeat"], edges.data["efeat"]], dim=1)
}
g.apply_edges(func=combine_feats)
h_edge = self.time_encoder(g.edata["h_edge"], g.edata["timestamp"])
g.edata["h_edge0"] = h_edge
# In the implementation of TAP-GNN, h_self0 is initialized with
# src_feat, which is the same as h_edge here.
rg = g.reverse(share_edata=True)
def simple_reduce(nodes): return {"h_self0":
nodes.mailbox["m"][:, -1, :].squeeze(1)}
rg.update_all(fn.copy_e("h_edge0", "m"), simple_reduce)
g.ndata["h_self0"] = rg.ndata["h_self0"]
# Remember to detach the tensor after loss.backward().
for i, layer in enumerate(self.layers):
cl = i
if layer._agg_type == "lstm":
h_self, h_, c_ = layer(g, cur_layer=cl)
g.ndata[f"h_self{cl + 1}"] = h_self
g.ndata[f"lstm_h{cl}"] = h_
g.ndata[f"lstm_c{cl}"] = c_
else:
h_self, hist_neigh = layer(g, cur_layer=cl)
h_self = self.activation(h_self)
g.ndata[f"h_self{cl + 1}"] = h_self
g.ndata[f"history_neigh{cl}"] = hist_neigh
deg = g.ndata["history_deg"]
g.ndata["history_deg"] = deg + g.in_degrees().to(h_self)
return g
class LinkLayer(nn.Module):
def __init__(self, in_features=128, out_features=1, concat=True, time_encoding="concat", dropout=0.2, proj=True):
super(LinkLayer, self).__init__()
self.concat = concat
mul = 2 if concat else 1
self.time_encoder = TimeEncodingLayer(
in_features, in_features, time_encoding=time_encoding)
self.fc = nn.Linear(in_features * mul, out_features)
self.dropout = nn.Dropout(dropout)
self.proj = proj
def forward(self, src_emb, dst_emb, src_t, dst_t, t):
emb_u = self.time_encoder(src_emb, t - src_t)
emb_v = self.time_encoder(dst_emb, t - dst_t)
if self.concat:
x = torch.cat([emb_u, emb_v], dim=1)
else:
x = emb_u + emb_v
logits = self.fc(self.dropout(x))
return logits.squeeze()
class OnlineTAPGNN(nn.Module):
def __init__(self, g, in_feats, edge_feats, n_hidden, args) -> None:
super(OnlineTAPGNN, self).__init__()
self.nfeat = g.ndata["nfeat"]
self.efeat = g.edata["efeat"]
self.logger = logging.getLogger()
self.conv = OnlineSAGE(in_feats, n_hidden, edge_feats, args.n_layers,
F.relu, args.dropout, args.agg_type)
self.pred = LinkLayer(n_hidden,
1,
time_encoding=args.time_encoding,
proj=args.projection)
self.loss_fn = nn.BCEWithLogitsLoss()
self.n_layers = args.n_layers
self.n_neg = args.n_neg
if args.norm:
self.norm = nn.LayerNorm(n_hidden)
else:
self.norm = None
def forward(self, g, batch_samples):
g = g.local_var()
# update h_self{0|...|layers}
# update node_last_time
device = g.ndata["nfeat"].device
batch_samples = [torch.tensor(s).to(device) for s in batch_samples]
src, dst, t = batch_samples
t = t.float()
h_nodes = g.ndata[f"h_self{self.n_layers}"]
if self.norm is not None:
h_nodes = self.norm(h_nodes)
h_time = g.ndata["last_time"]
logits = self.pred(h_nodes[src], h_nodes[dst], h_time[src], h_time[dst], t)
return logits.sigmoid()
def update(self, graph, batch_eids):
g = graph.local_var()
# edges involved nodes
sg = g.edge_subgraph(batch_eids)
# dgl 0.4.3post2 doesn't preserve the requires_grad as True when nfeat
# is trainable.
sg.copy_from_parent()
sg.ndata["nfeat"] = g.ndata["nfeat"][sg.ndata[dgl.NID]]
# compute new_neigh features
new_sg = self.conv(sg)
# update features
new_sg.copy_to_parent()
graph.ndata["last_time"] = g.ndata["last_time"]
graph.ndata["history_deg"] = g.ndata["history_deg"]
graph.ndata["h_self0"] = g.ndata["h_self0"]
for i in range(self.n_layers):
graph.ndata[f"history_neigh{i}"] = g.ndata[f"history_neigh{i}"]
graph.ndata[f"lstm_h{i}"] = g.ndata[f"lstm_h{i}"]
graph.ndata[f"lstm_c{i}"] = g.ndata[f"lstm_c{i}"]
graph.ndata[f"h_self{i + 1}"] = g.ndata[f"h_self{i + 1}"]
def init_graph(g, n_layers):
nfeat = g.ndata["nfeat"]
# Initialization.
for i in range(n_layers):
g.ndata[f"history_neigh{i}"] = torch.zeros_like(nfeat)
g.ndata[f"lstm_h{i}"] = torch.zeros_like(nfeat)
g.ndata[f"lstm_c{i}"] = torch.zeros_like(nfeat)
for i in range(n_layers):
g.ndata[f"h_self{i + 1}"] = torch.zeros_like(nfeat)
g.ndata["last_time"] = torch.zeros(nfeat.shape[0]).to(nfeat)
g.ndata["history_deg"] = torch.zeros(nfeat.shape[0]).to(nfeat)
def align_data_with_graph(g, val_labels):
# Call graph ndata, edata to forece device move.
cpu_g = dgl.graph(g.edges())
for k in g.ndata.keys():
cpu_g.ndata[k] = g.ndata[k].to("cpu")
for k in g.edata.keys():
cpu_g.edata[k] = g.edata[k].to("cpu")
val_data = TemporalDataset(cpu_g, val_labels, train=False)
val_samples = next(
iter(
DataLoader(val_data,
batch_size=len(val_labels),
shuffle=False,
num_workers=0)))
return val_samples
@torch.no_grad()
def eval_tapgnn(model, g, batch_samples):
logits = model.infer(g, batch_samples)
logits = logits.sigmoid().cpu().numpy()
return logits
@torch.no_grad()
def eval_online(model, g, val_labels):
# We update the edges in graph chronologically before each sample in
# val_labels.
src_l = val_labels["from_node_id"].to_numpy()[:, np.newaxis]
dst_l = val_labels["to_node_id"].to_numpy()[:, np.newaxis]
ts_l = val_labels["timestamp"].to_numpy()[:, np.newaxis]
t_th = g.edata["timestamp"].cpu().numpy()
start_eid = 0
end_eid = 1
logits = []
# Init before val_labels.
ts_train = np.unique(t_th[t_th < ts_l.min()])
for idx in trange(len(ts_train)):
end_eid = np.searchsorted(t_th, ts_train[idx], side="left")
if start_eid < end_eid:
model.update(g, np.arange(start_eid, end_eid))
start_eid = end_eid
if False:
# Check the equality between TAP-GNN and OnlineTAPGNN after each update.
n_layer = model.n_layers + 1
h_self = [g.ndata[f"h_self{i}"] for i in range(n_layer)]
tg = g.edge_subgraph(np.arange(end_eid), preserve_nodes=True)
tg.copy_from_parent()
def wrapper(layer):
def simple_reduce(nodes):
return {f"dst_feat{layer}":
nodes.mailbox[f"m{layer}"][:, -1, :].squeeze(1)}
return simple_reduce
for i in range(n_layer):
tg.update_all(fn.copy_e(f"dst_feat{i}", f"m{i}"), wrapper(i))
dst_feat = [tg.ndata[f"dst_feat{i}"] for i in range(n_layer)]
for h_, d_ in zip(h_self, dst_feat):
assert torch.all(torch.abs(h_ - d_) < 1e-4)
# Using float32 to avoid information leakage due to the float precision.
ts_l = np.float32(ts_l)
for idx in trange(len(src_l)):
# Update.
end_eid = np.searchsorted(t_th, ts_l[idx], side="left")
if start_eid < end_eid:
model.update(g, np.arange(start_eid, end_eid))
start_eid = end_eid
if False:
# Check the equality between TAP-GNN and OnlineTAPGNN after each update.
n_layer = model.n_layers + 1
h_self = [g.ndata[f"h_self{i}"] for i in range(n_layer)]
tg = g.edge_subgraph(np.arange(end_eid), preserve_nodes=True)
tg.copy_from_parent()
def wrapper(layer):
def simple_reduce(nodes):
return {f"dst_feat{layer}":
nodes.mailbox[f"m{layer}"][:, -1, :].squeeze(1)}
return simple_reduce
for i in range(n_layer):
tg.update_all(fn.copy_e(f"dst_feat{i}", f"m{i}"), wrapper(i))
dst_feat = [tg.ndata[f"dst_feat{i}"] for i in range(n_layer)]
for i, h_, d_ in zip(range(n_layer), h_self, dst_feat):
assert torch.all(torch.abs(h_ - d_) < 1e-4), i
logits.append(model(g, (src_l[idx], dst_l[idx], ts_l[idx])).item())
return np.array(logits)
@torch.no_grad()
def speed_online(model, g, val_samples, batch_size=128):
# We assume the model has been updated.
src_l = val_samples["from_node_id"].to_numpy()
dst_l = val_samples["to_node_id"].to_numpy()
ts_l = val_samples["timestamp"].to_numpy()
n_batch = int(np.ceil(len(val_samples) / batch_size))
start = time.time()
for idx in trange(n_batch):
sid = idx * batch_size
eid = sid + batch_size
prob = model(g, (src_l[sid: eid], dst_l[sid: eid], ts_l[sid: eid]))
model.update(g, np.arange(sid, eid))
end = time.time()
return n_batch, end - start
def eval_logit(labels, logits):
acc = accuracy_score(labels, logits >= 0.5)
f1 = f1_score(labels, logits >= 0.5)
auc = roc_auc_score(labels, logits)
return acc, f1, auc
def test_online(args, logger):
set_random_seed()
logger.info("Set random seeds.")
logger.info(args)
# Set device utility.
device = torch.device("cuda:{}".format(args.gid))
logger.info(
"Begin Conv on Device %s, GPU Memory %d GB", device,
torch.cuda.get_device_properties(device).total_memory // 2**30)
# Load nodes, edges, and labeled dataset for training, validation and test.
logger.info("Dataset preparation.")
nodes, edges, train_labels, val_labels, test_labels = prepare_dataset(
args.dataset)
delta = edges["timestamp"].shift(-1) - edges["timestamp"]
# Pandas loc[low:high] includes high, so we use slice operations here instead.
assert np.all(delta[:len(delta) - 1] >= 0)
# Set DGLGraph, node_features, edge_features, and edge timestamps.
logger.info("Construct DGLGraph.")
g = construct_dglgraph(edges, nodes, device, node_dim=args.n_hidden)
t = g.edata["timestamp"]
assert torch.all(t[1:] - t[:-1] >= 0)
src_maxeid, dst_maxeid, src_deg, dst_deg = precompute_maxeid(g)
g.edata["src_max_eid"] = src_maxeid.to(device)
g.edata["dst_max_eid"] = dst_maxeid.to(device)
g.edata["src_deg"] = src_deg.to(device)
g.edata["dst_deg"] = dst_deg.to(device)
lr = '%.4f' % args.lr
def ckpt_path(epoch):
return f'./ckpt/TAP-GNN-{args.dataset}-{args.agg_type}-{lr}-{epoch}-{args.hostname}-{device.type}-{device.index}.pth'
# MODEL_SAVE_PATH = f'./saved_models/TAP-GNN-{args.dataset}-{args.agg_type}-{lr}-layer{args.n_layers}-hidden{args.n_hidden}.pth'
# ckpt_state = torch.load(MODEL_SAVE_PATH)
in_feat = g.ndata["nfeat"].shape[-1]
edge_feat = g.edata["efeat"].shape[-1]
# gtc = TAPGNNLinkTrainer(g, in_feat, edge_feat, args.n_hidden, args)
# gtc.load_state_dict(ckpt_state)
# gtc = gtc.to(device)
online = OnlineTAPGNN(g, in_feat, edge_feat, args.n_hidden, args)
# online.load_state_dict(ckpt_state)
online = online.to(device)
# test_samples = align_data_with_graph(g, test_labels)
# logits = eval_tapgnn(gtc, g, test_samples)
# acc, f1, auc = eval_logit(test_labels["label"], logits)
# logger.info("acc: %.3f, f1: %.3f, auc: %.3f", acc, f1, auc)
# init_graph(g, args.n_layers)
# logits = eval_online(online, g, test_labels)
# acc, f1, auc = eval_logit(test_labels["label"], logits)
# metrics = {"accuracy": acc, "f1": f1, "auc": auc}
# write_result({"valid_auc": 0.0},
# metrics,
# args.dataset,
# {},
# postfix="OnlineTAPGNN")
# logger.info("acc: %.3f, f1: %.3f, auc: %.3f", acc, f1, auc)
init_graph(g, args.n_layers)
n_batch, duration = speed_online(online, g, val_labels, batch_size=args.batch_size)
logger.info("%d batch cost %.2f seconds.", n_batch, duration)
# method,dataset,time_batch,time_epoch,params
path = f'time_measure/Time-{args.dataset}-OnlineTAPGNN.csv'
if os.path.exists(path):
f = open(path, 'a')
else:
f = open(path, 'w')
f.write('method,dataset,time_batch,time_epoch,params\n')
params = f'\"batchsize={args.batch_size},layers={args.n_layers},agg_type={args.agg_type}\"'
s = f'OnlineTAPGNN,{args.dataset},{duration/n_batch:.4f},{duration:.4f},{params}\n'
f.write(s)
if __name__ == "__main__":
# Set arg_parser, logger, and etc.
parser = tapgnn_args()
args = parser.parse_args()
logger = set_logger()
test_online(args, logger)